Skip to main content
Log in

DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The copper(II) oxalate was synthesized, characterized using FT-IR and scanning electron microscopy and its non-isothermal decomposition was studied by differential scanning calorimetric at different heating rates. The kinetics of the thermal decomposition was investigated using different isoconversional and maximum rate (peak) methods viz. Kissinger–Akahira–Sunose (KAS), Tang, Starink1.95, Starink1.92, Flynn–Wall–Ozawa (FWO) and Bosewell. The activation energy values obtained from isoconversional methods of FWO and Bosewell are 0.9 and 3.0 %, respectively, higher than that obtained from other methods. The variation of activation energy, E α with conversion function, α, established using these different methods were found to be similar. Compared to the FWO method, the KAS method offers a significant improvement in the accuracy of the E a values. All but the Bosewell maximum rate (peak) methods yielded consistent values of E α (~137 kJ mol−1); however, the complexity of the thermal decomposition reaction can be identified only through isoconversional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L’vov BV. Kinetics and mechanism of thermal decomposition of nickel, manganese, silver, mercury and lead oxalates. Thermochim Acta. 2000;364:99–109.

    Article  Google Scholar 

  2. Murhty HSG, Rao MS, Kutty TRN. Thermal decomposition of titanyl oxalates—II: kinetics of decomposition of barium titanyl oxalate. J Inorg Nucl Chem. 1975;7:1875–8.

    Google Scholar 

  3. Patra BS, Otta S, Bhattamisra SD. A kinetic and mechanistic study of thermal decomposition of strontium titanyl oxalate. Thermochim Acta. 2006;441:84–8.

    Article  CAS  Google Scholar 

  4. Padmanabhan VM, Saraiya SC, Sundaram AK. Thermal decomposition of some oxalates. J Inorg Nucl Chem. 1960;12:356–9.

    Article  CAS  Google Scholar 

  5. Krishnamurty KV, Harris GM. The chemistry of the metal oxalato complexes. Chem Rev. 1961;61:213–41.

    Article  CAS  Google Scholar 

  6. Dollimore D, Nicholson D. The thermal decomposition of oxalates. Part I. The variation of surface area with the temperature of treatment in air. J Chem Soc. 1962;960–5.

  7. Dollimore D, Griffiths DL, Nicholson D. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J Chem Soc. 1963;2617–23.

  8. Dollimore D. The thermal decomposition of oxalates: a review. Thermochim Acta. 1987;117:331–63.

    Article  CAS  Google Scholar 

  9. Cetisli H, Cilgy GK, Donat R. Thermal and kinetic analysis of uranium salts Part 1. Uranium (VI) oxalate hydrates. J Therm Anal Calorim. 2012;108:1213–22.

    Article  CAS  Google Scholar 

  10. Lee S, Choi US, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans. 1999;121:280–9.

    Article  CAS  Google Scholar 

  11. Broadbent D, Dollimore J, Dollimore D, Evans TA. Kinetic study on the thermal decomposition of copper(II) oxalate. Faraday Trans. 1991;87:161–6.

    Article  CAS  Google Scholar 

  12. Dollimore D, Evans TA, Lee YF. Thermal decomposition of oxalates Part 25. The effect of sample preparation and environmental atmosphere on the thermal stability of copper(II) oxalate. Thermochim Acta. 1992;194:215–20.

    Article  CAS  Google Scholar 

  13. Mohamed MA, Galwey AK. A kinetic and mechanistic study of the thermal decomposition of copper(II) oxalate. Thermochim Acta. 1993;217:263–76.

    Article  CAS  Google Scholar 

  14. Galwey AK, Mohamed MA. A kinetic and mechanistic study of the thermal decomposition of copper(II) mallitate. Thermochim Acta. 1994;239:211–24.

    Article  CAS  Google Scholar 

  15. Al-Newaiser FA, Al-Thabaiti SA, Al-Youbi AO, Obaid AY, Gabal MA. Thermal decomposition kinetics of strontium oxalate. Chem Papers. 2007;61:370–5.

    Article  CAS  Google Scholar 

  16. Mohamed MA, Galwey AK, Halawy SA. A comparative study of the thermal reactivities of some transition metal oxalates in selected atmospheres. Thermochim Acta. 2005;429:57–72.

    Article  CAS  Google Scholar 

  17. Mohamed MA, Galwey AK, Halawy SA. Kinetic and thermodynamic studies of the non-isothermal decomposition of anhydrous copper(II) formate in different gas atmospheres. Thermochim Acta. 2004;411:13–20.

    Article  CAS  Google Scholar 

  18. Coetzee A, Eve DJ, Brown ME, Strydom CA. Kinetics of the thermal dehydrations and decompositions of some mixed metal oxalates. J Therm Anal. 1994;41:357–85.

    Article  CAS  Google Scholar 

  19. Lamprecht E, Watkins GM, Brown ME. The thermal decomposition of copper(II) oxalate revisited. Thermochim Acta. 2006;446:91–100.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of the non-isothermal crystallization of a polymer melt. Macromol Rapid Commun. 2002;23:766–70.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Sbirrazzuoli N. Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim. 2003;72:681–6.

    Article  CAS  Google Scholar 

  22. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Sbirrazzuoli N. Isoconversional Approach to Evaluating the Hoffman-Lauritzen Parameters (U* and Kg) from the overall rates of non-isothermal crystallization. Macromol Rapid Commun. 2004;25:733–8.

    Article  CAS  Google Scholar 

  24. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Non-isothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

    Article  CAS  Google Scholar 

  25. Vyazovkin S. Model-free kinetics, staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  26. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32.

    Article  CAS  Google Scholar 

  27. Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.

    Article  CAS  Google Scholar 

  28. Simon P. Isoconversional methods. J Therm Anal Calorim. 2004;76:123–32.

    Article  CAS  Google Scholar 

  29. Joraid AA, Abu-Sehly AA, El-Oyoun MA, Alamri SN. Non-isothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta. 2008;470:98–104.

    Article  CAS  Google Scholar 

  30. Akahira T, Sunose T. Trans joint convention of four electrical Institutes, paper no. 246, Research Report, Chiba Institute of Technology. Sci Technol. 1969;1971(16):22–31.

    Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Aboulkas A, El Harfi K, El Bouadili A, Benchanaa M, Mokhlisse A, Outzourit A. Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene. Oil Shale. 2007;24:15–33.

    CAS  Google Scholar 

  33. Murray P, White J. Kinetics of the thermal dehydration of clays IV. Thermal analysis of the clay minerals. Trans Brit Ceram Soc. 1955;54:204–38.

    CAS  Google Scholar 

  34. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  35. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  36. Flynn J, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  37. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  38. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  39. Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal. 1980;18:353–8.

    Article  CAS  Google Scholar 

  40. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data-review. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  42. Rao CNR. Chemical applications of infra red spectroscopy. New York: Academic Press; 1963. p. 365.

    Google Scholar 

  43. Starink MJ, Van Mourik P. Cooling and heating rate dependence of precipitation in an Al–Cu alloy. Mater Sci Eng A. 1992;156:183–94.

    Article  Google Scholar 

  44. Starink MJ. On the applicability of isoconversion methods for obtaining the activation energy of reactions within a temperature dependent equilibrium state. J Mater Sci. 1997;32:6505–12.

    Article  CAS  Google Scholar 

  45. Shah HV, Babb DA, Smith DW Jr. Bergman cyclopolymerization kinetics of bis-ortho-diynylarenes to polynaphthalene networks. A comparison of calorimetric method. Polymer. 2000;41:4415–22.

    Article  CAS  Google Scholar 

  46. Nakamoto K, Fujita J, Tanaka C, Kobayashi M. Infrared spectra of metallic complexes. IV. Comparison of the infrared spectra of unidentate and bidentate metallic complexes. J Am Chem Soc. 1957;79:4904–8.

    Article  CAS  Google Scholar 

  47. Schmelz MJ, Miyazawa T, Mizushima S, Lane TJ, Quagliano JV. Infra red absorption spectra of inorganic co-ordination complexes—IX Infra red spectra of oxalate complexes. Spectrochim Acta. 1957;9:51–8.

    Article  CAS  Google Scholar 

  48. Fujita J, Nakamoto K, Kobayashi M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J Phys Chem. 1957;61:1014–5.

    Article  CAS  Google Scholar 

  49. Fan Y, Zhang C, Zhan J, Wu J, Yang P. Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Trans Nonferr Met Soc. 2010;20:165–70.

    Article  CAS  Google Scholar 

  50. Randhawa BS, Kaur M. A comparative study on the thermal decomposition of some transition metal maleates and fumarates. J Therm Anal Calorim. 2007;89:251–5.

    Article  CAS  Google Scholar 

  51. Miller TW. Use of TG/FT-IR in material characterization. J Therm Anal Calorim. 2011;106:249–54.

    Article  CAS  Google Scholar 

  52. Birzescu M, Niculescu M, Dumitru R, Budrugeac P, Segal E. Copper(II) oxalate obtained through the reaction of 1,2-ethanediol with Cu(NO3) ·2 3H2O: structural investigations and thermal analysis. J Therm Anal Calorim. 2008;94:297–303.

    Article  CAS  Google Scholar 

  53. Khadikar PV. Structure and thermal characterization of tris-thallium(III) glycollate. J Therm Anal. 1987;32:737–48.

    Article  CAS  Google Scholar 

  54. Nagase K, Sato K, Tanaka N. Thermal dehydration and decomposition reactions of bivalent metal oxalates in the solid state. Bull Chem Soc Jpn. 1975;48:439–45.

    Article  CAS  Google Scholar 

  55. Clarke RM, Williams IR. Moolooite, a naturally occurring hydrated copper oxalate from Western Australia. Mineral Mag. 1986;50:295–8.

    Article  CAS  Google Scholar 

  56. Wu X, Zhou K, Wu W, Cui X, Li Y. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2013;111:9–16.

    Article  CAS  Google Scholar 

  57. Mehta SK, Kaur R. Thermal analysis, decomposition kinetics, and molecular modeling of transition metal (Fe, Co) surfactant complexes. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3244-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muraleedharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraleedharan, K., Kripa, S. DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim 115, 1969–1978 (2014). https://doi.org/10.1007/s10973-013-3366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3366-y

Keywords

Navigation