Skip to main content
Log in

Physico-chemical characterisation of a new polymorph of caffeine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Caffeine is a widely used drug substance. Two polymorphic forms and one hydrate of caffeine are known. Thanks to scanning transitiometry, the curves pressure versus temperature, P = f(T), of the caffeine were plotted. A (temperature, pressure) unary phase diagram was deduced. It confirms the existence of a new polymorph of caffeine at low pressure synthesized by sublimation. Its identification and its physico-chemical properties were determined using a variety of experimental methods: X-ray powder diffraction, differential scanning calorimeter, thermogravimetric analysis, thermally stimulated current and electrochemical impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Watters KL, Beal GD. Notes on the water content of crystalline caffeine. J Am Pharm Assoc. 1946;35:12–4.

    Article  Google Scholar 

  2. Sutor DJ. The structure of the pyrimidines and purines. VII. The crystal structure of caffeine. Acta Cryst. 1958;11:453–8.

    Article  CAS  Google Scholar 

  3. Gerdil R, March RE. On the arrangement of the water molecules in the crystal structure of caffeine. Acta Cryst. 1960;13:166–7.

    Article  CAS  Google Scholar 

  4. Both H, Cammenga K. Composition, properties, stability and thermal dehydration of crystalline caffeine hydrate. Thermochim Acta. 1980;40:29–39.

    Article  Google Scholar 

  5. Bogardus JB. Crystalline anhydrous-hydrate phase changes of caffeine and theophylline in solvent–water mixtures. J Pharm Sci. 1983;72:837–8.

    Article  CAS  Google Scholar 

  6. Suzuki E, Shirotani K, Tsuda Y, Sekiguchi K. Water content and dehydration behaviour of crystalline caffeine hydrate. Chem Pharm Bull. 1985;33:5028–35.

    Article  CAS  Google Scholar 

  7. Pirttimaki J, Laine E. The transformation of anhydrate and hydrate forms of caffeine at 100 % RH and 0 % RH. Eur J Pharm Sci. 1994;1:203–8.

    Article  CAS  Google Scholar 

  8. Griesser UJ, Burger A. The effect of water vapor pressure on desolvation kinetics of caffeine 4/5 hydrate. Int J Pharm. 1995;120:83–93.

    Article  CAS  Google Scholar 

  9. Edwards HGM, Lawson E, De Matas M, Shields L, York P. Metamorphosis of caffeine hydrate and anhydrous caffeine. J Chem Soc Perkin Trans. 1997;2:1985–90.

    Article  Google Scholar 

  10. Sabon F, Alberola S, Térol A, Jeanjean B. Sur le polymorphisme et la solubilité. Travaux de la Société de pharmacie de Montpellier. 1979;39:19–24.

    CAS  Google Scholar 

  11. Bothe H, Cammenga HK. Phase transitions and thermodynamic properties of anhydrous caffeine. J Therm Anal Calorim. 1979;16:267–75.

    Article  CAS  Google Scholar 

  12. Cesaro A, Starec G. Thermodynamic properties of caffeine crystal forms. J Phys Chem. 1980;84:1345–6.

    Article  CAS  Google Scholar 

  13. Epple M, Cammenga HK, Sarge SM, Diedrich R, Balek V. The phase transformation of caffeine: investigation by dynamic X-ray diffraction and emanation thermal analysis. Thermochim Acta. 1995;250:29–39.

    Article  CAS  Google Scholar 

  14. Lehto VP, Laine E. A kinetic study of polymorphic transition of anhydrous caffeine with microcalorimeter. Thermochim Acta. 1998;317:47–58.

    Article  CAS  Google Scholar 

  15. Griesser UJ, Szelagiewicz M, Hofmeir UCh, Pitt C, Cianferan S. Vapor pressure and heat of sublimation of crystal polymorphs. J Therm Anal Calorim. 1999;57:45–60.

    Article  CAS  Google Scholar 

  16. Babilev PV, Chiripiko VV (1985) Physicochemical and biopharmaceutic study of polymorphous caffeine modifications. Chemical Abstracts. 103: 92720f.

  17. Descamps M, Correia NT, Derollez P, Danede F, Capet F. Plastic and glassy crystal states of caffeine. J Phys Chem B. 2005;109:16092–8.

    Article  CAS  Google Scholar 

  18. Moura JJ, Correia NT, Diogo HP, Descamps M. Dielectric study of the slow motional process in the polymorphic states of anhydrous caffeine. J Phys Chem B. 2006;110:8268–73.

    Article  Google Scholar 

  19. Dong JX, Li Q, Tan ZC, Zhang ZH, Liu Y. The standard molar enthalpy of formation, molar heat capacities, and thermal stability of anhydrous caffeine. J Chem Thermodyn. 2007;39:108–14.

    Article  CAS  Google Scholar 

  20. Defossemont G, Ranzio SL, Legendre B. Contributions of calorimetry for C p determination and of scanning transitiometry for the study of polymorphism. Cryst Growth Des. 2004;4(6):1169–74.

    Article  CAS  Google Scholar 

  21. Lehmann Ch, Stowasser F. The crystal structure of anhydrous β-caffeine as determined from X-ray powder-diffraction data chemistry. Chem Eur J. 2007;13:2908–11.

    Article  CAS  Google Scholar 

  22. Enright GD, Terskikh VV, Brouwer DH, Ripmeester JA. The structure of two anhydrous polymorphs from single-crystal diffraction and ultrahigh-field solid-state 13C NMR spectroscopy. Cryst Growth Des. 2007;7(8):1406–10.

    Article  CAS  Google Scholar 

  23. Derollez P, Correia NT, Danède F, Capet F, Affouard F, Lefebvre J, Descamps M. Ab initio structure determination of the high-temperature phase of anhydrous caffeine by X-ray powder diffraction. Acta Crystallogr B. 2005;61:329–34.

    Article  Google Scholar 

  24. Carlucci L, Gavezzotti A. Molecular recognition and crystal energy landscapes: an X-ray and computational study of caffeine and other methylxanthines. Chem A Eur J. 2005;11(1):271–9.

    Article  Google Scholar 

  25. Egawa T, Kamiya A, Takeuchi H, Konaka S. Molecular structure of caffeine as determined by gas electron diffraction aided by theoretical calculations. J Mol Struct. 2006;825:151–7.

    Article  CAS  Google Scholar 

  26. Bauer M. Les Techniques de l’Ingénieur. Polymorphisme Origine et méthodes d’étude. 2005;1097:15.

    Google Scholar 

  27. Dichi E, Sghaier M, Fraisse B, Bonhomme F, Keller G. New preparation by sublimation at low pressure of glycine and physico-chemical study. J Alloys Compd. 2007;458:595–601.

    Article  Google Scholar 

  28. Randzio SL. Scanning transitiometry. Chem Soc Rev. 1996;25:383–92.

    Article  CAS  Google Scholar 

  29. Randzio SL, Stachowiak Ch, Grolier J-PE. Transitiometric determination of the three-phase curve in asymmetric binary systems. J Chem Thermodyn. 2003;35:639–48.

    Article  CAS  Google Scholar 

  30. Randzio SL, Orlowska M. Simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization over wide pressure and temperature ranges. Biomacromolecules. 2005;6:3045–50.

    Article  CAS  Google Scholar 

  31. Wright SF, Phang P, Dollimore D, Alexander KS. An overview of calibration materials used in thermal analysis benzoic acid. Thermochim Acta. 2002;392–393:251–7.

    Article  Google Scholar 

  32. Campel AN, Prodan CA. An apparatus for refined thermal analysis exemplified by a study of the system p-dichlorobenzene-p-dibromobenzene-p-chlorobromobenzene. J Am Chem Soc. 1948;90:553–61.

    Article  Google Scholar 

  33. Andon RJL, Connett J. Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry. Thermochim Acta. 1980;42:241–7.

    Article  CAS  Google Scholar 

  34. Della Gatta G, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry. Pure Appl Chem. 2006;78:1455–76.

    Article  CAS  Google Scholar 

  35. Clarke EWW, Glew DN. Evaluation of thermodynamic functions from equilibrium constants. Trans Faraday Soc. 1966;62:539–47.

    Article  CAS  Google Scholar 

  36. Narbutt J. The specific heats and heats of melting of dichlorobenzene, bromochlorobenzene, dibromobenzene, bromiodobenzene and diiodobenzenes. Z Elektrochem Angew Phys Chem. 1918;24:339–42.

    Google Scholar 

  37. Legendre B, Sghaier M. Curie temperature of nickel. J Therm Anal Calorim. 2011;105:141–3.

    Article  CAS  Google Scholar 

  38. Price DM. Vapor pressure determination by thermogravimetry. Thermochim Acta. 2001;367–368:253–62.

    Article  Google Scholar 

  39. Langmuir I. The vapor pressure of metallic tungsten. Phys Rev. 1913;2:329–42.

    Article  Google Scholar 

  40. Kruif CG, Block JG. The vapour pressure of benzoic acid. J Chem Thermodyn. 1982;14:201–6.

    Article  Google Scholar 

  41. Cox JD (1974) Recommended reference materials for realization of physicochemical properties. Pure Appl Chem 424-4.

  42. Emel’yanenko VN, Verevkin SP. Thermodynamic properties of caffeine: reconciliation of available experimental data. J Chem Thermodyn. 2008;40:1661–5.

    Article  Google Scholar 

  43. Burger A, Ramberger R. On the polymorphism of pharmaceuticals and other molecular crystals. I Theory of thermodynamic rules. Mikrochim Acta. 1979;72:259–71.

    Article  Google Scholar 

  44. Burger A, Ramberger R. On the polymorphism of pharmaceuticals and other molecular crystals. II Applicability of thermodynamic rules. Mikrochim Acta. 1979;72:273–316.

    Article  Google Scholar 

  45. Manduva R, Kett VL, Banks SR, Wood J, Reading M, Craig DQM. Calorimetric and spatial characterization of polymorphic transitions in caffeine using quasi-isothermal MTDSC and localized thermomechanical analysis. J Pharm Sci. 2008;97(3):1285–300.

    Article  CAS  Google Scholar 

  46. Gabis V, Lagache M (1981) Les transformations de phases dans les solides minéraux. Société Française de Minéralogie et de Cristallographie, Paris. 1: 14.

  47. Dichi E, Sghaier M, Fraisse B, Bonhomme F. Physico-chemical characterization of γ-amino n-butyric acid nanoparticles. Chem Pharm Bull. 2011;59(6):703–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Dichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dichi, E., Legendre, B. & Sghaier, M. Physico-chemical characterisation of a new polymorph of caffeine. J Therm Anal Calorim 115, 1551–1561 (2014). https://doi.org/10.1007/s10973-013-3429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3429-0

Keywords

Navigation