Skip to main content
Log in

Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO2) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO2, and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Farid MM, Khudhair AM, Razack SAK. A review on phase change energy storage: materials and applications. Energy Convers Manage. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  2. Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11:1913–65.

    Article  CAS  Google Scholar 

  3. Veerappan M, Kalaiselvam S, Iniyan S, Goic R. Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy. 2009;83:1245–52.

    Article  CAS  Google Scholar 

  4. Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2011;107:949–54.

    Article  Google Scholar 

  5. Sari A, Cemil A, Karaipekli A, Orhan U. Microencapsulated n-octacosane as phase change material for thermal energy storage. Sol Energy. 2009;83:1757–63.

    Article  CAS  Google Scholar 

  6. Wang LJ, Duo M. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change materials for thermal energy storage. Appl Energy. 2010;87:2660–5.

    Article  CAS  Google Scholar 

  7. Harikrishnan S, Roseline AA, Kalaiselvam S. Preparation and thermophysical properties of water–glycerol mixture-based CuO nanofluids as PCM for cooling applications. IEEE Trans Nanotechnol. 2013;12:35–629.

    Article  Google Scholar 

  8. Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010;84:1402–12.

    Article  CAS  Google Scholar 

  9. Shatikian V, Ziskind G, Letan R. Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Transfer. 2008;51:1488–93.

    Article  CAS  Google Scholar 

  10. Sari A, Karaipekli K. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27:1271–7.

    Article  CAS  Google Scholar 

  11. Siegel R. Solidification of low conductivity material containing dispersed high conductivity particles. Int J Heat Mass Transfer. 1977;1977(20):1087–9.

    Article  Google Scholar 

  12. Kao H, Li M, Lv X, Tan J. Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material. J Therm Anal Calorim. 2012;107:299–303.

    Article  CAS  Google Scholar 

  13. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 1995;231:99–103.

    CAS  Google Scholar 

  14. Zhu DS, Wu SY, Yan S. Numerical simulation on thermal energy storage behaviour of SiC–H2O nanofluids. Energy Sour A. 2011;33:1317–25.

    Article  CAS  Google Scholar 

  15. Zeng JL, Sun LX, Xu F, Tan ZC, Zhang ZH, Zhang J, Zhang T. Study of a PCM based energy storage system containing Ag nanoparticles. J Therm Anal Calorim. 2007;87:369–73.

    Article  CAS  Google Scholar 

  16. Kalaiselvam S, Parameshwaran R, Harikrishnan S. Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings. Renew Energy. 2012;39:375–87.

    Article  CAS  Google Scholar 

  17. Wu S, Zhu D, Zhang X, Huang J. Preparation and melting/freezing characteristics of Cu/Paraffin nanofluids as phase-change material (PCM). Energy Fuels. 2010;24:1894–8.

    Article  CAS  Google Scholar 

  18. Elgafy A, Lafdi K. Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon. 2005;43:3067–74.

    Article  CAS  Google Scholar 

  19. Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta. 2009;488:39–42.

    Article  CAS  Google Scholar 

  20. Jana S, Salehi-Khojin A, Zhong W-H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462:45–55.

    Article  CAS  Google Scholar 

  21. Baghbanzadeh M, Rashidi A, Rashtchian D, Lofti R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  22. Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material. Thermochim Acta. 2012;533:46–55.

    Article  CAS  Google Scholar 

  23. Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid–liquid organic PCM. J Therm Anal Calorim. 2009;2:507–12.

    Article  Google Scholar 

  24. Utomo AT, Poth H, Robbins PT, Pacek AW. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transfer. 2012;55:7772–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. S. Harikrishnan, is grateful to the Ministry of New and Renewable Energy (MNRE), New Delhi for the award of Senior Research Fellow (SRF) under the National Renewable Energy Fellowship (NREF) program. The authors would like to thank the UGC, New Delhi, for providing the financial support to accomplish this research work under Major Research Project scheme and UGC F.No. 42-894/2013 (SR). Also, the authors are grateful to Mr. Arul Maximus Rabel, Scientific Assistant, Satyabama University, Chennai, India, for FE-SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalaiselvam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harikrishnan, S., Deepak, K. & Kalaiselvam, S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim 115, 1563–1571 (2014). https://doi.org/10.1007/s10973-013-3472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3472-x

Keywords

Navigation