Skip to main content
Log in

The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of porous ammonium perchlorate (POAP) on the thermomechanical and combustion behavior of solid rocket propellants based on polyvinylchloride binder has been investigated. Differential scanning calorimetry, differential thermogravimetry, dynamic mechanical thermal analysis, and scanning electronic microscopy measurements were used for thermomechanical and thermal decomposition properties assessment. The results obtained indicate that lower glass transitions of the propellants and catalytic effect of combustion are obtained with POAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

nAP:

Normal ammonium perchlorate

PoAP:

Porous ammonium perchlorate

PVC:

Polyvinylchloride

NCP:

Composite solid propellant formulated with normal ammonium perchlorate

PCP:

Composite solid propellant formulated with porous ammonium perchlorate

BDG:

Butyl diglycol

DOP:

Dioctyl phthalate

References

  1. De la Fuente JL. An analysis of the thermal aging behaviour in high-performance energetic composites through the glass transition temperature. Polym Degrad Stab. 2009;94:664–9.

    Article  CAS  Google Scholar 

  2. Kohga M, Hagihara Y. Burning behavior of composite propellant containing fine porous ammonium perchlorate. Propellant Explos Pyrotech. 1998;23:182–7.

    Article  CAS  Google Scholar 

  3. Kadiresh PN, Sridhar BTN. Experimental study on ballistic behavior of an aluminized AP/HTPB propellant during accelerated aging. J Therm Anal Calorim. 2010;100:331–5.

    Article  CAS  Google Scholar 

  4. Sun YL, Li SF, Ding DH. Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim. 2006;86:497–503.

    Article  CAS  Google Scholar 

  5. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. Thermal degradation of a composite solid propellant examined by DSC. Kinetic study. J Therm Anal Calorim. 2004;75:551–7.

    Article  CAS  Google Scholar 

  6. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, Suárez-Iha MEV. TG studies of composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.

    Article  CAS  Google Scholar 

  7. Davies JV, Jacobs PWM, Russel-Jones A. Thermal decomposition of ammonium Perchlorate. Trans Fraday Soc. 1967;63:1737.

    Article  CAS  Google Scholar 

  8. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  9. Jacobs PW, Whithead HM. Thermal decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;4:551–90.

    Article  Google Scholar 

  10. Dorota M, Alexander K, Urszula F, Bogdan S, Paul M, David V, Jacek K. Low-temperature thermal decomposition of large single crystals of ammonium perchlorate. Chem Phys Lett. 2008;454:233–6.

    Article  CAS  Google Scholar 

  11. Keenan AG, Siegmund RF. Thermal decomposition of ammonium perchlorate. Q Rev Chem Soc Lond. 1969;3(23):430–52.

    Article  Google Scholar 

  12. Jacobs PW, Ng WL. Thermal decomposition of ammonium perchlorate single crystals. J Solid State Chem. 1974;4(9):315–22.

    Article  Google Scholar 

  13. Singh G, Prem Felix S, Pandey DK. Studies on energetic compounds part 37: kinetics of thermal decomposition of perchlorate complexes of some transition metals with ethylenediamine. Thermochim Acta. 2004;411:61–71.

    Article  CAS  Google Scholar 

  14. Kraeutle KJ. The thermal decomposition of orthorhombic ammonium perchlorate single crystals. J Phys Chem. 1970;74(6):1350–6.

    Article  CAS  Google Scholar 

  15. Bolodyrev VV, Alexandrov VV. Thermal decomposition of ammonium perchlorate. Combust Flame. 1970;1(15):71–8.

    Article  Google Scholar 

  16. Bircumshaw LL, Newman BH. Proceeding of the royal society. 1954. p. 227/115–132.

  17. Leu AL, Yeh TF, Chang FM, Liu CS, Huang CC. Burning behavior of composite solid propellant containing porous ammonium perchlorate. Propellants Explos Pyrotech. 1989;14:108–12.

    Article  CAS  Google Scholar 

  18. Lista EL. Solid porous, coated oxidizer, method of preparation and novel propellant. US Patent 3,830,672; 1974.

  19. Klager K, Manfred RK, Lista EL. Burning behavior of porous ammonium perchlorate. In: Proceeding of 10th international annual conference of ICT, Karlsruhe; 1979. p. 283–97.

  20. Leu AL, Wu RJ. Formulation effects on the burning rate of aluminized solid propellants. J Propuls Power. 1988;1(4):22–6.

    Article  Google Scholar 

  21. Mezroua A, Hamel M, Medaour Y. Topograhy of the process of thermal decomposition of ammonium perchlorate under confinement. In: Proceeding of 41st international annual conference of ICT, Karlsruhe; 2010. p. 77/1–8.

  22. Parr®. Introduction to bomb calorimetry No. 202M, Moline, II; 1978.

  23. Al-Harthi A, Williams A. Effect of fuel binder and oxidizer particle diameter on the combustion of ammonium perchlorate based propellants. Fuel. 1998;77(13):1451–68.

    Article  CAS  Google Scholar 

  24. Longuet B, Gillard P. Experimental investigation on the heterogonous kinetic process of the low thermal decomposition of ammonium perchlorate particles. Propellants Explos Pyrotech. 2009;34:59–71.

    Article  CAS  Google Scholar 

  25. Kishore K, Sunitha MR. Effect of transition metal oxides on decomposition and deflagration of composite solid propellant systems: a survey. AIAAJ. 1979;17(10):1118–25.

    Article  CAS  Google Scholar 

  26. Shin-Ming S, Sun-I C, Bor-Horng W. The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim Acta. 1993;223:135–43.

    Article  Google Scholar 

  27. An-Lu L, Tsao-Fa Y. The thermal behavior of porous residual ammonium perchlorate. Thermochim Acta. 1991;186:53–61.

    Article  Google Scholar 

  28. Sara C, Manfred AB, Kalus M, Luciano G. Ageing of HTPB/Al/AP rocket propellant formulations investigated by DMA measurements, Sol-Gel and GPC analysis In: Proceeding of 41st international annual conference of ICT, Karlsruhe; 2010. p. 42/1–38.

  29. Lessard P, France B. Effect of porosity on the burn rate of a gas-generating composition. Propellants Explos Pyrotech. 2003;28:132–7.

    Article  CAS  Google Scholar 

  30. Banerjee S, Chakravarthy SR. Ammonium perchlorate-based composite solid propellant formulations with plateau burning rate trends. Combust Explos Shock Waves. 2007;43:435–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Khimeche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezroua, A., Khimeche, K., Lefebvre, M.H. et al. The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim 116, 279–286 (2014). https://doi.org/10.1007/s10973-013-3517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3517-1

Keywords

Navigation