Skip to main content
Log in

Determination of ice content in hardened concrete by low-temperature calorimetry

Influence of baseline calculation and heat of fusion of confined water

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low-temperature calorimetry has been used to determine the ice content in concrete at different temperatures when exposed to low-temperature environments. However, the analysis of the ice content from the measured data of heat flow is not straightforward. In this study, two important factors influencing the ice content calculation are discussed. The importance of the baseline determination for the calculation of the ice content is realized. Two different methods of generating the baseline are discussed. First, the ‘J-baseline’ is discussed which is a recently proposed extrapolation method based on the accumulated heat curves measured in the freezing and the melting process. Second, the ‘C-baseline’ is discussed in which a calculated baseline is used where the heat capacity of both water and ice and the phase changing behaviour under different testing temperatures are considered. It turns out that both the ‘J-baseline’ method and the ‘C-baseline’ method can be used to calculate the approximate baseline. The heat of fusion of the water confined in small pores is another important parameter to be considered in ice content calculation. This property must be carefully analyzed in order to accurately calculate the ice contents at different temperatures in the freezing and melting process. It should be noted that there is no general agreement on how to obtain the important temperature dependence of the heat of fusion of water confined in small pores. By performing comparison studies, the present study shows the influence of the different values of the heat of fusion commonly adopted on the calculated ice content for the studied concrete samples. The importance and necessity to use an accurate value of the heat of fusion is emphasized. Based on the calculation of the baseline proposed in this work and by carefully selecting the values for the heat of fusion, the ice content in a hardened concrete sample is expected to be estimated with an acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In concrete technology, the freeze/thaw resistance of concrete can be improved by entraining a certain amount of high-quality air voids, typically 4–6 vol%, e.g. see [3].

References

  1. A.M. Neville.: Properties of concrete. Prentice Hall, 4th edition edition, 1995.

  2. Diamond S (1999) Aspects of concrete porosity revisited. Cement Concrete Res 29(8):1181–1188.

    Article  CAS  Google Scholar 

  3. M. Pigeon, R. Pleau.: Durability of concrete in cold climates. Number 4. London: Taylor & Francis; 1995.

  4. Kjeldsen AM, Geiker MR (2008) On the interpretation of low temperature calorimetry data. Materials and Structures, 41(1):213–224.

    Article  CAS  Google Scholar 

  5. Kuhn W, Peterli E, Majer H (1955) Freezing point depression of gels produced by high polymer network. J Polym Sci, 16(82):539–548.

    Article  CAS  Google Scholar 

  6. Blachere JR, Young JE. The freezing point of water in porous glass. J Am Ceram Soc 1972;55(6):306–308.

    Article  CAS  Google Scholar 

  7. Riikonen J, Salonen J, Lehto VP (2011) Utilising thermoporometry to obtain new insights into nanostructured materials (review part 1). J Therm Anal Calorim 105:811–821.

    Article  CAS  Google Scholar 

  8. Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials (review part 2). J Therm Anal Calorim 2011;105:823–830.

    Article  CAS  Google Scholar 

  9. Majda D, Makowski W, Mańko M. Pore size distribution of micelle-templated silicas studied by thermoporosimetry using water and n-heptane. J Therm Anal Calorim 2012;109(2):663–669.

    Article  CAS  Google Scholar 

  10. Illeková E, Miklošovičová M, Šauša O, Berek D. Solidification and melting of cetane confined in the nanopores of silica gel. J Therm Anal Calorim 2012;108(2):497–503.

    Article  Google Scholar 

  11. P.J. Williams.: Properties and behavior of freezing soils. Technical Report~72, Norwegian Geotechnical Institute, Oslo, Norway, 1961.

  12. Fagerlund G. Determination of pore-size distribution from freezing-point depression. Mater Struct 1973;6(3):215–225.

    Google Scholar 

  13. Brun M, Lallemand A, Quinson JF, Eyraud C. A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochimica Acta 1977;21(1):59–88.

    Article  CAS  Google Scholar 

  14. J.W.P. Schmelzer, editor. Nucleation Theory and Applications. WILEY-VCH, 2005.

  15. Scherer GW. Freezing gels. J Non-Cryst Solids 1993;155(1):1–25.

    Article  CAS  Google Scholar 

  16. Setzer MJ. Micro-ice-lens formation in porous solid. J Colloid Interface Sci 2001;243(1):193–201.

    Article  CAS  Google Scholar 

  17. Kaufmann JP. Experimental identification of ice formation in small concrete pores. Cement Concrete Res 2004;34(8):1421–1427.

    Article  CAS  Google Scholar 

  18. Sun Z, Scherer GW. Pore size and shape in mortar by thermoporometry. Cement Concrete Res 2010;40(5):740–751.

    Article  CAS  Google Scholar 

  19. R. Defay, I. Prigogine, A. Bellemans, D.H Everett. Surface tension and adsorption. London: Longmans; 1966.

  20. K. Fridh. Internal frost damage in concrete–experimental studies of destruction mechanisms. Ph D thesis, Division of Building Materials, Lund Institute of Technology, 2005.

  21. M. Wu, B. Johannesson, M. Geiker. Impact of sample saturation on the detected porosity of hardened concrete using low temperature calorimetry. Cement and Concrete Composites, submitted for publication.

  22. Radjy F, Sellevoid EJ, Richards CW. Effect of freezing on the dynamic mechanical response of hardened cement paste down to −60 °C. Cement Concrete Res 1972;2(6):697–715.

    Article  CAS  Google Scholar 

  23. Radjy F, Sellevold EJ. Internal friction peaks due to adsorbed and capillary water in microporous substances. Nature 1973;241(111):133–135.

    CAS  Google Scholar 

  24. C. Le Sage de Fontenay. Ice formation in hardened cement paste (in Danish). Ph D thesis, Building Materials Laboratory, Technical University of Denmark, 1982.

  25. D.H. Bager. Ice Formation in Hardened Cement Paste. PhD thesis, Building Materials Laboratory, Technical University of Denmark, 1984.

  26. Bager DH, Sellevold EJ. Ice formation in hardened cement paste, Part I–room temperature cured pastes with variable moisture contents. Cement Concrete Res 1986;16(5):709–720.

    Article  CAS  Google Scholar 

  27. Bager DH, Sellevold EJ. Ice formation in hardened cement paste, Part II-drying and resaturation on room temperature cured pastes. Cement Concrete Res 1986;16(6):835–844.

    Article  CAS  Google Scholar 

  28. Bager DH, Sellevold EJ. Ice formation in hardened cement paste, Part III-slow resaturation of room temperature cured pastes. Cement Concrete Res 1987;17(1):1–11.

    Article  CAS  Google Scholar 

  29. J. Villadsen. Pore structure in cement based materials. Technical Report 277, Building Materials Laboratory, Technical University, Denmark, 1992.

  30. S. Jacobsen, E.J. Sellevold. Frost/salt scaling and ice formation of concrete: effect of curing temperature and silica fume on normal and high strength concrete. In J.~Marchand, M.~Pigeon, and M.~Setzer, editors, RILEM PROCEEDINGS 30. FREEZE-THAW DURABILITY OF CONCRETE, pages 93–105, 1997.

  31. Hansen EW, Gran HC, Sellevold EJ. Heat of fusion and surface tension of solids confined in porous materials derived from a combined use of NMR and calorimetry. J Phys Chem B 1997;101(35):7027–7032.

    Article  CAS  Google Scholar 

  32. F. Radjy, E.J. Sellevold, K.K. Hansen. Isoteric vapor pressure–temperature data for water sorption in hardened cement paste: enthalpy, entropy and sorption isotherms at different temperatures. Technical Report BYG-DTU R057, Technical University of Denmark(DTU), Denmark:Lyngby, 2003.

  33. Johannesson B. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures. Cement Concrete Compos 2010;32(1):73–83.

    Article  CAS  Google Scholar 

  34. B. Johannesson, G.~Fagerlund. Concrete for the storage of liquid petroleum gas–freeze/thaw phenomena and durability at freezing to −50 °C. Report TVBM– 7174, Division of Building Materials, Lund Institute of Technology, 2003.

  35. G. Fagerlund, B. Johannesson. Concrete for the storage of liquid petroleum gas, Part II: influence of very high moisture contents and extremely low temperatures, −196 °C. Report TVBM - 1851, Division of Building Materials, Lund Institute of Technology, 2005.

  36. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochimica Acta 2005;433(1-2):27–50.

    Article  CAS  Google Scholar 

  37. G. Fagerlund. Studies of the scaling, the water uptake and the dilation of specimens exposed to freezing and thawing in NaCl solution. In Proceedings of RILEM committee 117 DC Freezing/thaw and de-icing resistance of concrete, pages 37–66, Swden, 1991.

  38. R.A. Helmuth. Capillary size-restrictions on ice-formation in hardened portland cement-pastes. In Proceedings of 4th Symposium on Chemistry of Cement, volume~2, Washington DC, 1960.

  39. TC Powers. Physical properties of cement paste. In Proc. Fourth Int. Symp. on the Chemistry of Cement, Washington, DC, 1960.

  40. H.F.W. Taylor. Cement chemistry. London: Thomas Telford 2nd edition, 1997.

  41. Lothenbach B, Winnefeld F. Thermodynamic modelling of the hydration of portland cement. Cement Concrete Res 2006;36(2):209–226.

    Article  CAS  Google Scholar 

  42. C. D. Hodgman, R. C. Weast, S. M. Selby, editors. Handbook of chemistry and physics. Cleveland:The Chemical Rubber Co. 45 edition, 1965.

  43. D. Gray, editor. American Institute of Physics Handbook. McGraw- Hill, New York, 2nd edition, 1963.

  44. Murphy DM, Koop T. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart J Roy Meteor Soc 2005;131(608):1539–1565.

    Article  Google Scholar 

  45. M. Wu. Imapct of cooling/heating rate drifting or fluctutaion on the caculated ice content by low temperature calorimetry. Study Report, Building Materials Laboratory, Technical University of Denmark, 2011.

  46. Ishikiriyama K, Todoki M, Min KH, Yonemori S, Noshiro M. Pore size distribution measurements for microporous glass using differential scanning calorimetry. J Therm Anal Calorim 1996;46(3–4):1177–1189.

    Article  CAS  Google Scholar 

  47. Ishikiriyama K, Todoki M, Motomura K. Pore size distribution (PSD) measurements of silica gels by means of differential scanning calorimetry I. optimization for determination of PSD. J Colloid Interface Sci 1995;171(1):92–102.

    Article  CAS  Google Scholar 

  48. Ishikiriyama K, Todoki M. Evaluation of water in silica pores using differential scanning calorimetry. Thermochimica Acta 1995; 256(2):213–226.

    Article  CAS  Google Scholar 

  49. Ishikiriyama K, Todoki M. Pore size distribution measurements of silica gels by means of differential scanning calorimetry II. thermoporosimetry. J Colloid Interface Sci 1995;171(1):103–111.

    Article  CAS  Google Scholar 

  50. Brun M, Lallemand A, Quinson JF, Eyraud C. Changement d’état liquid–solide dans les milieux poreux. II. Étude théorique de la solidification d’un condensate capillaire (liquid–solid change of state in porous media. II. Theoretical study of the solidification of a capillary condensate). J Chim Phys 1973;6:979–989.

    Google Scholar 

  51. M. Randall. International Critical Tables V–VII. New York:McGraw–Hill, 2nd edition, 1930.

  52. Chen CS. Systematic calculation of thermodynamic properties of an ice-water system at subfreezing temperatures. Transac ASAE 1988;31(5):1602–1606.

    Article  Google Scholar 

  53. Yamamoto T, Endo A, Inagi Y, Ohmori T, Nakaiwa M. Evaluation of thermoporometry for characterization of mesoporous materials. J Colloid Interface Sci 2005;284(2):614–620.

    Article  CAS  Google Scholar 

  54. Yamamoto T, Mukai SR, Nitta K, Tamon H, Endo A, Ohmori T, Nakaiwa M. Evaluation of porous structure of resorcinol-formaldehyde hydrogels by thermoporometry. Thermochimica acta 2005;439(1):74–79.

    Article  CAS  Google Scholar 

  55. Sellevold E, Bager D. Some implications of calorimetric ice formation results for frost reistance testing of concrete. in Beton og Frost, Dansk Betonforening 1985;22:47–74.

    Google Scholar 

  56. Quinson JF, Astier M, Brun M. Determination of surface areas by thermoporometry. Appl Catal 1987;30(1):123–130.

    Article  CAS  Google Scholar 

  57. J.F. Quinson, M. Brun. Progress in thermoporometry. K. K. Unger, J. Rouquerol, K. S.W Sing and H. Kral (eds): Characterization of porous solids, Amsterdam:Elsevier, 1988. p. 307.

  58. Brun M, Quinson JF, Benoist L. Determination of pore size distribution by SETARAM DSC 101 (thermoporometry). Thermochimica Acta 1981;49(1):49–52.

    Article  CAS  Google Scholar 

  59. Eyraud C, Quinson JF, Brun M. The role of thermoporometry in the study of porous solids. Stud Surf Sci Catal 1988;39:295–305.

    Article  Google Scholar 

  60. Van der Grift CJG, Boon AQM, Van Veldhuizen AJW, Trommar HGJ, Geus JW, Quinson JF, Brun M. Preparation and characterization of porous silica spheres containing a copper (oxide) catalyst. Appl Catal 1990;65(2):225–239.

    Article  CAS  Google Scholar 

  61. M. Stöcker. Thermoporometry, in Handbook of Porous Solids. Weinheim:Wiley-VCH Verlag GmbH, 2008.

  62. Hay JN, Laity PR. Observations of water migration during thermoporometry studies of cellulose films. Polymer 2000;41(16):6171–6180.

    Article  CAS  Google Scholar 

  63. Ksiazczak A, Radomski A, Zielenkiewicz T. Nitrocellulose porosity-thermoporometry. J Therm Anal Calorim 2003;74(2):559–568.

    Article  CAS  Google Scholar 

  64. Sun Z, Scherer GW. Effect of air voids on salt scaling and internal freezing. Cement Concrete Res 2010;40(2):260–270.

    Article  CAS  Google Scholar 

  65. Lothenbach B. Thermodynamic equilibrium calculations in cementitious systems. Mater Struct 2010;43(10):1413–1433.

    Article  CAS  Google Scholar 

  66. Mrevlishvili GM, Privalov PL. Calorimetric study of the melting of frozen aqueous solutions of electrolytes. J Struct Chem 1968;9(1):5–7.

    Article  Google Scholar 

  67. Mitchell J, Webber JBW, Strange JH. Nuclear magnetic resonance cryoporometry. Phys Reports 2008;461(1):1–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 264448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wu.

Electronic supplementary material

Appendix A. Supplementary material

Supplementary contents associated with this article can be found, in the online version, at (DOI added later by the editor).

Below is the link to the electronic supplementary material.

PDF (508 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Johannesson, B. & Geiker, M. Determination of ice content in hardened concrete by low-temperature calorimetry. J Therm Anal Calorim 115, 1335–1351 (2014). https://doi.org/10.1007/s10973-013-3520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3520-6

keywords

Navigation