Skip to main content
Log in

Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effects of high nano-SiO2 loading (up to 30 mass%) on polybenzoxazine (PBA-a) thermal degradation kinetics have been investigated using nonisothermal thermogravimetric analysis (TG). The DTG curves revealed three stages of thermal decomposition process in the neat PBA-a, while the first peak at low temperature was absent in its nanocomposites. As a consequence, the maximum degradation temperature of the nanocomposites shifted significantly to higher temperature as a function of the nano-SiO2 contents. Moreover, the degradation rate for every degradation stage was found to decrease with the increasing amount of the nano-SiO2. From the kinetics analysis, dependence of activation energy (E a) of the nanocomposites on conversion (α) suggests a complex reaction with the participation of at least two different mechanisms. From Coats–Redfern and integral master plot methods, the average E a and pre-exponential factor (A) of the nanocomposites showed systematically higher value than that of the PBA-a, likely from the shielding effect of the nanoparticles. The main degradation mechanism of the PBA-a was determined to be a random nucleation type with one nucleus on the individual particle (F1 model), while that of the PBA-a nanocomposite was the best described by diffusion-controlled reaction (D3 model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar KSS, Nair CPR. Polybenzoxazines: chemistry and properties. 1st ed. England: iSmithers Rapra Publishing; 2010.

    Google Scholar 

  2. Ishida H, Agag T. Handbook of benzoxazine resin. 1st ed. Oxford: Elsevier; 2012.

    Google Scholar 

  3. Rimdusit S, Jubsilp C, Tiptipakorn S. Alloys and composites of polybenzoxazines: properties and applications. 1st ed. New York: Springer; 2013.

    Book  Google Scholar 

  4. Aerospace product selector guide (2012) Henkel corporation.

  5. Araldite benzoxazine thermoset resins selector guide (2009) Huntsman corporation.

  6. Hemvichian K, Ishida H. Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC-MS. Polymer. 2002;43:4391–402.

    Article  CAS  Google Scholar 

  7. Low HY, Ishida H. Mechanistic study on the thermal decomposition of polybenzoxazines: effects of aliphatic amines. J Polym Sci Part B. 1998;36:1935–46.

    Article  CAS  Google Scholar 

  8. Hemvichian K, Laobuthee A, Chirachanchai S, Ishida H. Thermal decomposition processes in polybenzoxazine model dimers investigated by TGA–FTIR and GC–MS. Polym Degrad Stab. 2002;76:1–15.

    Article  CAS  Google Scholar 

  9. Fam SB, Uyar T, Ishida H, Hacaloglu J. Investigation of polymerizationof benzoxazines and thermal degradation characteristics of polybenzoxazines via direct pyrolysis mass spectrometry. Polym Int. 2012;61:1532–41.

    Article  CAS  Google Scholar 

  10. Yang P, Gu Y. Synthesis of a novel benzoxazine-containing benzoxazole structure and its high performance thermoset. J Appl Polym Sci. 2012;124:2415–22.

    Article  CAS  Google Scholar 

  11. Kambour RP, Ligon WV, Russell RR. Enhancement of the limiting oxygen index of an aromatic polycarbonate by the incorporation of silicone blocks. J Polym Sci Polym Lett. 1978;16:327–33.

    Article  CAS  Google Scholar 

  12. Liu YL, Wei WL, Hsu KY, Ho WH. Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta. 2004;412:139–47.

    Article  CAS  Google Scholar 

  13. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;114:1606–18.

    Article  CAS  Google Scholar 

  14. Vassiliou AA, Chrissafis K, Bikiaris DN. Thermal degradation kinetics of in situ prepared PET nanocomposites with acid-treated multi-walled carbon nanotubes. J Therm Anal Calorim. 2010;100:1063–71.

    Article  CAS  Google Scholar 

  15. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.

    Article  CAS  Google Scholar 

  16. Pilawka R, Paszkiewicz S, Rosłaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-013-3239-4.

    Google Scholar 

  17. Nistor MT, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly (vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.

    Article  CAS  Google Scholar 

  18. Dorigato A, Pegoretti A, Frache A. Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim. 2012;109:863–73.

    Article  CAS  Google Scholar 

  19. Pal MK, Gautam J. Effects of inorganic nanofillers on the thermal degradation and UV-absorbance properties of polyvinyl acetate. J Therm Anal Calorim. 2013;111:689–701.

    Article  CAS  Google Scholar 

  20. Feng Cheng HK, Sahoo NG, Lu X, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2012;109:17–25.

    Article  CAS  Google Scholar 

  21. Laachachi A, Ferriol M, Cochez M, Lopez-Cuesta JM, Ruch D. A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly (methyl methacrylate). Polym Degrad Stab. 2009;94:1373–8.

    Article  CAS  Google Scholar 

  22. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S. High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos B. 2014;56:197–206.

    Article  CAS  Google Scholar 

  23. Mahrholz T, Stangle J, Sinapius M. Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Compos A. 2009;40:235–43.

    Article  CAS  Google Scholar 

  24. Goertzen WK, Kessler MR. Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites. Compos A. 2008;39:761–8.

    Article  CAS  Google Scholar 

  25. Montero B, Ramırez C, Rico M, Barral L, Dıez J, Lopez J. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system. Polym Int. 2010;59:112–8.

    Article  CAS  Google Scholar 

  26. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.

    Article  CAS  Google Scholar 

  27. Ishida H. Process for preparation of benzoxazine compounds in solventless systems. US Patent 5,543,516. 1996.

  28. Doyle CD. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem. 1961;33:77–9.

    Article  CAS  Google Scholar 

  29. Park SJ, Kim HC, Lee HI, Suh DH. Thermal stability of imidized epoxy blends initiated by N-benzypyrazinium hexafluoantimonate salt. Macromolecules. 2001;34:7573–5.

    Article  CAS  Google Scholar 

  30. Periadurai T, Vijayakumar CT, Balasubramanian MJ. Thermal decomposition and flame retardant behaviour of SiO2-phenolic nanocomposite. Anal Appl Pyrol. 2010;89:244–9.

    Article  CAS  Google Scholar 

  31. Flynn JH, Wall LA. Thermal analysis of polymer by thermogravimetric analysis. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  32. Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  33. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  Google Scholar 

  34. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–5.

    Article  CAS  Google Scholar 

  35. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  36. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  37. Koga N, Criado J. Kinetic analyses of solid-state reactions with a particle-size distribution. J Am Ceram Soc. 1998;81:2901–9.

    Article  CAS  Google Scholar 

  38. Perez-Maqueda LA, Criado JM. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Cal. 2000;60:909–15.

    Article  CAS  Google Scholar 

  39. Beraa O, Pilic B, Pavlicevic J, Jovicic M, Hollo B, Szecsenyi KM, Spirkova M. Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta. 2011;515:1–5.

    Article  CAS  Google Scholar 

  40. Perondi D, Broetto CC, Dettmer A, Wenzel BM, Godinho M. Thermal decomposition of polymeric resin [(C29H24N205)n]: kinetic parameters and mechanisms. Polym Degrad Stab. 2012;97:2110–7.

    Article  CAS  Google Scholar 

  41. Jankovic B. The kinetic analysis of isothermal curing reaction of an unsaturated polyester resin: estimation of the density distribution functions of the apparent activation energy. Chem Eng J. 2010;162:331–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530007-AM), the Research, Development and Engineering (RD&E) Fund through National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand (Project P-12-00292), and from the Japan-East Asia Network of Exchange for students and Youth Program (JENESYS), 2011, Japan. Nano-SiO2 (Reolosil® QS-20) was kindly provided by Cobra International Co., Ltd. (Thailand).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Rimdusit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dueramae, I., Jubsilp, C., Takeichi, T. et al. Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine. J Therm Anal Calorim 116, 435–446 (2014). https://doi.org/10.1007/s10973-013-3542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3542-0

Keywords

Navigation