Skip to main content
Log in

Fast-scan chip-calorimeter measurement on the melting behaviors of melt-crystallized syndiotactic polystyrene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We employed fast-scan chip-calorimeter (FSC) measurement (Flash DSC1) to study the melting of syndiotactic polystyrene after melt-crystallized at various cooling rates as well as after isothermally crystallized at various high temperatures. We attributed the observed double melting peak to a melting-recrystallization process of beta-form crystals upon heating, as evidenced by their variations with different cooling and heating rates. Our experiments demonstrated the advantages of FSC techniques in the investigation of crystallization and melting behaviors of polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005. p. 279–452.

    Google Scholar 

  2. Hu W. Polymer physics: a molecular approach. Wien: Springer; 2012. p. 187–92.

    Google Scholar 

  3. Allen LH, Ramanath G, Lai SL, Ma Z, Lee S, Allman DDJ, et al. 1,000,000 °C/s thin film electrical heater: in situ resistivity measurementsof Al and Ti/Si thin films during ultra rapid thermal annealing. Appl Phys Lett. 1994;64(4):417–9.

    Article  CAS  Google Scholar 

  4. Adamovsky SA, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403(1):55–63.

    Article  CAS  Google Scholar 

  5. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaardeng S, et al. The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta. 2011;522(1–2):36–45.

  6. Iervolino E, van Herwaarden AW, van Herwaarden FG, van de Kerkhof E, van Grinsven PPW, Leenaers ACHI, et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim Acta. 2011;522(1–2):53–9.

    Article  CAS  Google Scholar 

  7. Poel GV, Istrate D, Magon A, Mathot V. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J Therm Anal Calorim. 2012;110(3):1533–46.

    Article  Google Scholar 

  8. Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett. 1996;77(1):99–102.

    Article  CAS  Google Scholar 

  9. Kwan AT, Efremov MY, Olson EA, Schiettekatte F, Zhang M, Geil PH, et al. Nanoscale calorimetry of isolated polyethylene single crystals. J Polym Sci Part B. 2001;39(11):1237–45.

    Article  CAS  Google Scholar 

  10. Brucato V, Piccarolo S, La Carrubba V. An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci. 2002;57(19):4129–43.

    Article  CAS  Google Scholar 

  11. Adamovsky S, Schick C. Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta. 2004;415(1–2):1–7.

    Article  CAS  Google Scholar 

  12. De Santis F, Adamovsky S, Titomanlio G, Schick C. Scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules. 2006;39(7):2562–7.

    Article  Google Scholar 

  13. De Santis F, Adamovsky S, Titomanlio G, Schick C. Isothermal nanocalorimetry of isotactic polypropylene. Macromolecules. 2007;40(25):9026–31.

    Article  Google Scholar 

  14. Minakov AA, van Herwaarden AW, Wien W, Wurm A, Schick C. Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers. Thermochim Acta. 2007;461(1–2):96–106.

    Article  CAS  Google Scholar 

  15. Minakov AA, Wurm A, Schick C. Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur Phys J E. 2007;23(1):43–53.

    Article  CAS  Google Scholar 

  16. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C. Kinetics of nucleation and crystallization in poly(epsilon-caprolactone) (PCL). Polymer. 2011;52(9):1983–97.

    Article  CAS  Google Scholar 

  17. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B. Formation and reorganization of the mesophase of random copolymers of propylene and 1-butene. Polymer. 2011;52(4):1107–15.

    Article  CAS  Google Scholar 

  18. Wurm A, Zhuravlev E, Eckstein K, Jehnichen D, Pospiech D, Androsch R, et al. Crystallization and homogeneous nucleation kinetics of poly(epsilon-caprolactone) (PCL) with different molar masses. Macromolecules. 2012;45(9):3816–28.

  19. Cebe P, Hu X, Kaplan DL, Zhuravlev E, Wurm A, Arbeiter D, et al. Beating the heat-fast scanning melts silk beta sheet crystals. Sci Rep. 2013;3:828–35.

    Article  Google Scholar 

  20. Jiang XM, Li ZL, Wang J, Gao HH, Zhou DS, Tang YW. Combining TMDSC measurements between chip-calorimeter and molecular simulation to study reversible melting of polymer crystals. Thermochim Acta. 2014. http://dx.doi.org/10.1016/j.tca.2014.04.002.

  21. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, et al. Crystalline high polymers of α-olefins. J Am Chem Soc. 1955;77(6):1708–10.

    Article  CAS  Google Scholar 

  22. Ishihara N, Seimiya T, Kuramoto M, Uoi M. Crystalline syndiotactic polystyrene. Macromolecules. 1986;19(9):2464–5.

    Article  CAS  Google Scholar 

  23. Woo EM, Sun YS, Yang CP. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its miscible blends. Prog Polym Sci. 2001;26(6):945–83.

    Article  CAS  Google Scholar 

  24. Gowd EB, Tashiro K, Ramesh C. Structural phase transitions of syndiotactic polystyrene. Prog Polym Sci. 2009;34(3):280–315.

    Article  CAS  Google Scholar 

  25. De Rosa C. Crystal structure of the trigonal modification (αform) of syndiotactic polystyrene. Macromolecules. 1996;29(26):8460–5.

    Article  Google Scholar 

  26. De Rosa C, Guerra G, Petraccone V, Pirozzi B. Crystal structure of the emptied clathrate form (δ(e) form) of syndiotactic polystyrene. Macromolecules. 1997;30(14):4147–52.

    Article  Google Scholar 

  27. De Rosa C, Rapacciuolo M, Guerra G, Petraccone V, Corradini P. On the crystal structure of the orthorhombic form of syndiotactic polystyrene. Polymer. 1992;33(7):1423–8.

    Article  Google Scholar 

  28. Chatani Y, Shimane Y, Ijitsu T, Yukinari T. Structural study on syndiotactic polystyrene: 3. Crystal structure of planar form-I. Polymer. 1993;34(8):1625–9.

    Article  CAS  Google Scholar 

  29. Guerra G, Vitagliano VM, De Rosa C, Petraccone V, Corradini P. Polymorphism in melt crystallized syndiotactic polystyrene samples. Macromolecules. 1990;23(5):1539–44.

    Article  CAS  Google Scholar 

  30. Bu WS, Li YY, He JS, Zeng JJ. An interpretation of the formation of α- and β-form crystals in bulk syndiotactic polystyrene. Macromolecules. 1999;32(21):7224–5.

    Article  CAS  Google Scholar 

  31. Minakov AA, Mordvintsev DA, Schick C. Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer. 2004;45(11):3755–63.

    Article  CAS  Google Scholar 

  32. Minakov AA, Mordvintsev DA, Tol R, Schick C. Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min). Thermochim Acta. 2006;442(1–2):25–30.

    Article  CAS  Google Scholar 

  33. Ho RM, Lin CP, Tsai HY, Woo EM. Metastability studies of syndiotactic polystyrene polymorphism. Macromolecules. 2000;33(17):6517–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (Nos. 20825415 and 21274061), National Basic Research Program of China (No. 2011CB606100) and Program for Changjiang Scholars and Innovative Research Team in University is appreciated. The support from Anhui Tong Feng Electronics Corporation is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jiang, X., Gao, H. et al. Fast-scan chip-calorimeter measurement on the melting behaviors of melt-crystallized syndiotactic polystyrene. J Therm Anal Calorim 118, 1531–1536 (2014). https://doi.org/10.1007/s10973-014-4059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4059-x

Keywords

Navigation