Skip to main content
Log in

Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behaviors of electrospinned polymer nanofibers including azidodeoxy cellulose nitrate (ACN) and polyurethane (PU) were studied by thermal analysis techniques i.e., differential scanning calorimetery (DSC) and thermogravimetery (TG). Thermoanalytical results revealed that main thermal degradation for the ACN nanofibers occurs during three individual steps at the temperature range of 160–500 °C. Similarly, PU nanofibers decompose completely during three steps at the temperature range of 190–460 °C. However, nanofibers of ACN and PU have lower thermal stabilities in comparison with their bulk form. Thermal decomposition kinetic of the nanofibers was studied by non-isothermal DSC at different heating rates. Meanwhile, thermal decomposition kinetic of nanofibers was studied by non-isothermal DSC at different heating rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS, Atifeh SM. Effect of functional group on thermal stability of cellulose derivative energetic polymers. Fuel. 2012;95:394–9.

    Article  CAS  Google Scholar 

  2. Nagayama K, Oyumi Y. Combustion characteristics of high burn rate azide polymer propellant. Propell Explos Pyrotech. 1996;21:74–8.

    Article  CAS  Google Scholar 

  3. Barbieri U, Polacco G, Keicher T, Massimi R. Preliminary characterization of propellants based on p(GA/BAMO) and pAMMO binders. Propell Explo Pyrotech. 2009;34:427–35.

    Article  CAS  Google Scholar 

  4. Dubis C, Perreault F. Shelf-life prediction of propellants using a reaction severity index. Propell Explos Pyrotech. 2002;27:253–61.

    Article  Google Scholar 

  5. Ramesh S, Rajalingam P, Radhakrishnan G. Chain-extended polyurethanes - synthesis and characterization. Polymer Int. 1991;25:253–6.

    Article  CAS  Google Scholar 

  6. Provatas A. Characterisation and polymerisation studies of energetic binder systems, DSTO-TR-1171. 2001.

  7. Ahmad S, Ashraf SM, Sharmin E, Zafar F, Hasant A. Studies on ambient cured PU modified epoxy coatings synthesized from sustainable resource. Prog Cryst Growth Charact Mater. 2002;45:83–8.

    Article  CAS  Google Scholar 

  8. Kendagannaswamy BK, Siddaramaiah. Chain extended polyurethane-synthesis and characterization. J Appl Polym Sci. 2002;84:359–69.

    Article  CAS  Google Scholar 

  9. Oprea S. Effects of fillers on polyurethane resin-based polyurethane elastomeric bearing materials for passive isolation. J Comp Mater. 2008;42:285–2673.

    Article  Google Scholar 

  10. Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning. Adv Mater. 2012;24:2547–66.

    Article  CAS  Google Scholar 

  11. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng. 2013;298:504–20.

    Article  CAS  Google Scholar 

  12. Han X-J, Huang Z-M, Huang C, Du Z-F, Wang H, Wang J, He C-L, Wu Q-S. Preparation and characterization of electrospun polyurethane/inorganic-particles nanofibers. Polym Compos. 2012;33:2045–57.

    Article  CAS  Google Scholar 

  13. Kohsari I, Pourmortazavi SM, Hajimirsadeghi SS. Non-isothermal kinetic study of the thermal decomposition of diaminoglyoxime and diaminofurazan. J Therm Anal Cal. 2007;89:543–6.

    Article  CAS  Google Scholar 

  14. Li R, Xu H, Hu H, Yang G, Wang J, Shen J. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J Energ Mater. 2014;32:50–9.

    Article  CAS  Google Scholar 

  15. Xie L, Shao Z, Wang W, Wang F. Preparation of Al-NPs/NC composite nanofibers by electrospinning. Integr Ferroelectr. 2011;127:184–92.

    Article  CAS  Google Scholar 

  16. Azimfar F, Kohsari I. Pourmortazavi SM, investigation on decomposition kinetic and thermal stability of metallocene catalysts. J Inorg Organomet Polym. 2009;19:181–6.

    Article  CAS  Google Scholar 

  17. Gao D, Qiao H, Wang Q, Cai Y, Wei Q. Structure, morphology and thermal stability of porous carbon nanofibers loaded with cobalt nanoparticles. J Eng Fiber Fabr. 2011;6:6–9.

    CAS  Google Scholar 

  18. Vald S. Influence of the chain extender length and diisocyanate amount on the thermal stability and mechanical properties of some polyurethanes. Mater Plast. 2008;45:394–7.

    Google Scholar 

  19. Pourmortazavi SM, Kohsari I, Teimouri MB, Hajimirsadeghi SS. Thermal behaviour kinetic study of the dihydroglyoxime and dichloroglyoxime. Mater Lett. 2007;61:4670–3.

    Article  CAS  Google Scholar 

  20. Abu-Saied MA, Abdelrazek Khalil K, Al-Deyab SS. Preparation and characterization of poly vinyl acetate nanofiber doping copper metal. Int J Electrochem Sci. 2012;7:2019–27.

    CAS  Google Scholar 

  21. Nagle DJ, Celina M, Llewellyn R, Fredericks PM. Infrared microspectroscopic study of the thermo-oxidative degradation of hydroxyl terminated polybutadiene/isophorone diisocyanate polyurethane rubber. Polym Degrad Stabil. 2007;92:1446–54.

    Article  CAS  Google Scholar 

  22. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34:1068–133.

    Article  CAS  Google Scholar 

  23. Bhunia HP, Jana RN, Basak A, Lenka S, Nando GB. Synthesis of polyurethane from cashew nut shell liquid (CNSL), a renewable resource. J Polym Sci, Part A: Polym Chem. 1998;36:391–400.

    Article  CAS  Google Scholar 

  24. Vigo TL, Sachinvala N. Deoxycelluloses and related structures. Polym Adv Technol. 1999;10:311–20.

    Article  CAS  Google Scholar 

  25. Chao JW, So JH. Polyurethane- silver fibers prepared by infiltration and reduction of silver nitrate. Matter Lett. 2006;60:2653–5.

    Article  Google Scholar 

  26. Maeda S, Yurimoto J, Samukawa S, Kojima Y. Stabilized polyurethane. Japan 14, 752 (66) 1963. C.A. 66, 86, 263, 1967.

  27. Gao H-X, Zhao F-Q, Hu R-Z, Zhao H-A, Zhang H. Estimation of the critical temperature of thermal explosion for azido-acetic-acid-2-(2-azido-acetoxy)-ethylester using non-isothermal DSC. J Therm Anal Cal. 2009;95:477–82.

    Article  CAS  Google Scholar 

  28. ASTM E698, Test methods for Arrhenius kinetic constants for thermally unstable materials.

  29. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  30. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the pre-exponential factor on temperature. J Therm Anal Cal. 2005;82:671–5.

    Article  CAS  Google Scholar 

  31. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  32. Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energ Mater. 2012;30:97–106.

    Article  CAS  Google Scholar 

  33. Shamsipur M, Pourmortazavi SM, Miran Beigi AA, Heydari R, Khatibi M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS Pharm Sci Tech. 2013;14:287–93.

    Article  CAS  Google Scholar 

  34. Shamsipur M, Pourmortazavi SM, Hajimirsadeghi SS. Investigation on decomposition kinetics and thermal properties of copper fueled pyrotechnic compositions. Combust Sci Tech. 2011;183:575–87.

    Article  CAS  Google Scholar 

  35. Charsley EL, Laye PG, Brown ME. Pyrotechnics. Handbook of thermal analysis and calorimetry. New York: Elsevier; 2003.

    Google Scholar 

  36. Humienik MO, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    Article  Google Scholar 

  37. Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, Hajimirsadeghi SS. Non-isothermal kinetic studies on thermal decomposition of energetic materials. J Therm Anal Calorim. 2012;110:857–63.

    Article  CAS  Google Scholar 

  38. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  39. Pickard JM. Critical ignition temperature. Thermochim Acta. 2002;392:37–40.

    Article  Google Scholar 

  40. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Fathollahi M, Hosseini SG. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel. Fuel. 2008;87:244–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seied Mahdi Pourmortazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmortazavi, S.M., Sadri, M., Rahimi-Nasrabadi, M. et al. Thermal decomposition kinetics of electrospun azidodeoxy cellulose nitrate and polyurethane nanofibers. J Therm Anal Calorim 119, 281–290 (2015). https://doi.org/10.1007/s10973-014-4064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4064-0

Keywords

Navigation