Skip to main content
Log in

Influence of ferric hydroxide on smoke suppression properties and combustion behavior of intumescent flame retardant silicone rubber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New silicone rubbers(SR)-based hybrid material containing intumescent flame retardant (IFR) and ferric hydroxide (FeOOH) has been developed in order to improve flame retardancy of SR. The synergistic effects of FeOOH with IFR in halogen-free flame retardant SR/IFR blends have been studied by cone calorimeter test (CCT) and thermogravimetric analysis (TG). The data obtained from the CCT indicate that the SR/IFR/FeOOH sample with 4.0 mass% FeOOH has the lowest HRR, SPR, TSR, THR, and SF among all samples. The digital photo graphs give positive evidence that there is a synergistic effect between IFR with FeOOH. The TG results reveal that FeOOH can enhance the thermal stability of SR/IFR/FeOOH at high temperature. Besides the traditional investigations on cone calorimeter tests, an intensive study on the thermo-degradation kinetics was carried out to reveal the mechanism of the outstanding flame retarding performance of the SR/IFR/FeOOH. FeOOH can improve the flame retardancy, increase the thermal stability during the whole process of degradation, and strengthen the ability to form a thermally stable and condensed barrier for heat and mass transfer. These attractive features of SR/IFR/FeOOH suggest that the method proposed herein is a good approach to prepare very effective flame retardants and corresponding super flame retarding SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lestari F, Hayes AJ, Green AR, Chattopadhyay G. In vitro cytotoxicity and morphological assessment of smoke from polymer combustion in human lung derived cells (A549). Int J Hyg Environ Heal. 2012;215:320–32.

    Article  CAS  Google Scholar 

  2. Chen XL, Jiao CM, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104:1037–43.

    Article  CAS  Google Scholar 

  3. Jiao CM, Dong J, Chen XL, Li SX. Influence of T31 content on combustion and thermal degradation behaviors on flame-retardant epoxy composites. J Therm Anal Calorim. 2013;114:1201–6.

    Article  CAS  Google Scholar 

  4. Gann RG, Babrauskas V, Grayson SJ, Marsh ND. Hazards of combustion products: toxicity, opacity, corrosivity, and heat release: the experts’ views on capability and issues. Fire Mater. 2011;35:115–27.

    Article  CAS  Google Scholar 

  5. Wang L, Song L, Hu Y. Influence of different metal oxides on the thermal, combustion properties and smoke suppression in ethylene-vinyl acetate. Ind Eng Chem Res. 2013;52:8062–9.

    Article  CAS  Google Scholar 

  6. Wang J, Feng L, Chao X, Feng Y. Performance of room temperature vulcanized (RTV) silicone rubber-based composites: DBDPO/RTV and DBDPE/Sb2O3/RTV. Polym-Plast Technol. 2012;51:1245–50.

    Article  CAS  Google Scholar 

  7. Pradhan B, Srivastava SK, Bhowmick AK, Saxena A. Effect of bilayered stearate ion-modified Mg/Al layered double hydroxide on the thermal and mechanical properties of silicone rubber nanocomposites. Polym Int. 2012;61:458–65.

    Article  CAS  Google Scholar 

  8. Zou H, Zhang L, Tian M, Wu S, Zhao S. Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J Appl Polym Sci. 2010;115:2710–7.

    Article  CAS  Google Scholar 

  9. Zhou W, Wang CF. Thermal properties of heat conductive silicone rubber filled with hybrid fillers. J Compos Mater. 2008;42:173–87.

    Article  CAS  Google Scholar 

  10. Fang S, Hu Y, Song L, Zhan J, He Q. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2007;43:1057–62.

    Article  Google Scholar 

  11. Gui H, Zhang X. An EVA/unmodified nano-magnesium hydroxide silicone rubber nanocomposite with synergistic flame retardancy. Chin J Polym Sci. 2007;25:437–40.

    Article  CAS  Google Scholar 

  12. Nie SB, Zhang MX, Yuan SJ, Dai GL, Hong NN, Song L, Hu Y, Liu XL. Thermal and flame retardant properties of novel intumescent flame retardant low-density polyethylene (LDPE) composites. J Therm Anal Calorim. 2012;109:999–1004.

    Article  CAS  Google Scholar 

  13. Zhang P, Kang M, Hu Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material. J Therm Anal Calorim. 2013;112:1199–205.

    Article  CAS  Google Scholar 

  14. Jiao CM, Zhuo JL, Chen XL. Synergistic effects of zinc oxide in intumescent flame retardant silicone rubber composites. Plast Rubber Compos. 2013;42:374–8.

    Article  CAS  Google Scholar 

  15. Liu Q, Song L, Lu H, Hu Y, Wang Z, Zhou S. Study on combustion property and synergistic effect of intumescent flame retardant styrene butadiene rubber with metallic oxides. Polym Adv Technol. 2009;20:1091–5.

    Article  CAS  Google Scholar 

  16. Wang X, Song L, Yang H, Lu H, Hu Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res. 2011;50:5376–83.

    Article  CAS  Google Scholar 

  17. Jiao CM, Chen XL. Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites. J Therm Anal Calorim. 2009;98:813–8.

    Article  CAS  Google Scholar 

  18. Thirumal M, Singha NK, Khastgir D, Manjunath BS, Naik YP. Halogen-free flame-retardant rigid polyurethane foams: effect of alumina trihydrate and triphenylphosphate on the properties of polyurethane foams. J Appl Polym Sci. 2010;116:2260–8.

    CAS  Google Scholar 

  19. Zhuo JL, Dong J, Jiao CM, Chen XL. Synergistic effects between red phosphorus and alumina trihydrate in flame retardant silicone rubber composites. Plast Rubber Compos. 2013;42:239–43.

    Article  CAS  Google Scholar 

  20. Lu H, Song L, Hu Y. A review on flame retardant technology in China. Part II: flame retardant polymeric nanocomposites and coatings. Polym Adv Technol. 2011;22:379–94.

    Article  CAS  Google Scholar 

  21. Kong Q, Hu Y, Song L, Wang Y, Chen Z, Fan W. Influence of Fe-MMT on crosslinking and thermal degradation in silicone rubber/clay nanocomposites. Polym Adv Technol. 2006;17:463–7.

    Article  CAS  Google Scholar 

  22. Nabiyouni G, Ghanbari D. Thermal, magnetic, and optical characteristics of ABS-Fe2O3 nanocomposites. J Appl Polym Sci. 2012;125:3268–74.

    Article  CAS  Google Scholar 

  23. Carty P, White S. Iron-Chlorine interactions in blends of poly(vinyl chloride) and and acrylonitrile-butadiene-styrene containing basic iron (III) oxide. Polymer. 1995;36:1109–15.

    Article  CAS  Google Scholar 

  24. Carty P, White S. Anomalous flammability behaviour of CPVC (chlorinated poly vinylchloride) in blends with ABS (acrylonitrile-butadiene-styrene) containing flame-retarding/smoke-suppressing compounds. Polymer. 1997;38:1111–9.

    Article  CAS  Google Scholar 

  25. Carty P, White S. The effect of temperature on char formation in polymer blends an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends. Polym Degrad Stab. 2002;75:173–84.

    Article  CAS  Google Scholar 

  26. Carty P, White S. The effects of antimony (III) oxide and basic iron (III) oxide on the flammability and thermal stability of a tertiary polymer blend. Polym Degrad Stab. 1995;47:305–10.

    Article  CAS  Google Scholar 

  27. Marinović-Cincović M, Popović MČ, Novaković MM, Nedeljković JM. The influence of β-FeOOH nanorods on the thermal stability of poly(methyl methacrylate). Polym Degrad Stab. 2007;92:70–4.

    Article  Google Scholar 

  28. Lecouvet B, Bourbigot S, Sclavons M, Bailly C. Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab. 2012;97:1745–54.

    Article  CAS  Google Scholar 

  29. Han J, Liang G, Gu A, Ye J, Zhang Z, Yuan L. A novel inorganic-organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J Mater Chem. 2013;1:2169.

    Article  CAS  Google Scholar 

  30. Chen XL, Jiao CM, Li SX, Hu Y. Preparation and properties of a single molecule intumescent flame retardant. Fire Saf J. 2013;58:208–12.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  33. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  34. Schartel B, Hull TR. Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  35. Jeffrey W, Gilman CLJ, Alexander B, Morgan RH Jr. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater. 2000;12:1866–73.

    Article  Google Scholar 

  36. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36:203–15.

    Article  CAS  Google Scholar 

  37. Cogen JM, Lin TS, Lyon RE. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater. 2009;33:33–50.

    Article  CAS  Google Scholar 

  38. Jiao CM, Chen XL. Preparation and flame retardant properties of EVA/Mg(OH)2/La2O3 composites. Plast Rubber Compos. 2010;39:445–8.

    Article  CAS  Google Scholar 

  39. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA. Carbon nanotubes provide self-extinguishing grade to silicone-based foams. J Mater Chem. 2008;18:3933–9.

    Article  CAS  Google Scholar 

  40. Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94:465–95.

    Article  CAS  Google Scholar 

  41. Zhang J, Feng SR, Ma QY. Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black. J Appl Polym Sci. 2003;89:1548–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51106078; 51206084) and the Outstanding Young Scientist Research Award Fund from Shandong Province (BS2011CL018, BS2010CL019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhuo, J., Chen, X. et al. Influence of ferric hydroxide on smoke suppression properties and combustion behavior of intumescent flame retardant silicone rubber composites. J Therm Anal Calorim 119, 487–497 (2015). https://doi.org/10.1007/s10973-014-4108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4108-5

Keywords

Navigation