Skip to main content
Log in

Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects that the fly ash addition has on the behavior of thermally resistant corundum concrete were discussed. Experimental program implied production of two refractory composites: “referent” concrete from 20 % of high-aluminate cement and 80 % of corundum aggregate, “recycled” concrete from 10 % of high-aluminate cement, 20 % of lignite coal ash, and 70 % of corundum aggregate. The fly ash was mechanically activated by a vibratory disk mill. In the concrete matrix, the ash had a role of cement partial replacement and microfiller. The mechanical and thermal properties of the concretes were studied at temperatures ranging from ambient to 1,400 °C as adopted maximum. Mechanisms of thermally induced processes were observed by differential thermal analysis at 10, 20, and 30 °C min−1 heating rates. Referent and recycled concretes showed differences in calculated activation energies. The variations in refractory concretes performances were discussed with support of scanning electron microscope imagining and X-ray diffraction results. The recycled ash concrete exhibited properties that met the requirements for the castables, which proves it suitable for use in severe conditions at high temperature and highlights the reusing principle and possibility of cleaner and economically sustainable production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ouedraogo E, Roosefid M, Prompt N, Deteuf C. Refractory concretes uniaxial compression behavior under high temperature testing conditions. J Eur Ceram Soc. 2011;31:2763–74.

    Article  CAS  Google Scholar 

  2. Simonin F, Olagnon C, Maximilien S, Fantozzi G. Room temperature quasi-brittle behaviour of an aluminous refractory concrete after firing. J Eur Ceram Soc. 2002;22:165–72.

    Article  CAS  Google Scholar 

  3. Vodak F, Trtık K, Kapickov O, Hoskov S, Demo P. The effect of temperature on strength–porosity relationship for concrete. Constr Build Mater. 2004;18:529–34.

    Article  Google Scholar 

  4. Tomba Martinez A, Luz A, Braulio M, Pandolfelli V. Creep behavior modeling of silica fume containing Al2O3–MgO refractory castables. Ceram Inter. 2012;38:327–32.

    Article  Google Scholar 

  5. Chancey R, Stutzman P, Juenger M, Fowler D. Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem Concrete Res. 2010;40:146–56.

    Article  CAS  Google Scholar 

  6. Erol M, Kucukbayrak S, Ersoy-Mericboyu A. Characterization of sintered coal fly ashes. Fuel 2008;87:1334–1340.

  7. Erol M, Kucukbayrak S, Ersoy-Mericboyu A. Comparison of the properties of glass, glass–ceramic and ceramic materials produced from coal fly ash. J Hazard Mater. 2008;153:418–25.

    Article  CAS  Google Scholar 

  8. Biernacki J, Vazrala A, Leimer H. Sintering of a class F fly ash. Fuel. 2008;87:782–92.

    Article  CAS  Google Scholar 

  9. Ilic M, Cheeseman C, Sollars S. Mineralogy and microstructure of sintered lignite coal fly ash. Fuel. 2003;82:331–6.

    Article  CAS  Google Scholar 

  10. Furlani E, Bruckner S, Minichelli D, Mashio S. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge. Ceram Inter. 2008;34:2137–42.

    Article  CAS  Google Scholar 

  11. Acar I, Atalay M. Characterization of sintered class F fly ashes. Fuel. 2013;106:195–203.

    Article  CAS  Google Scholar 

  12. Terzić A, Pavlović Lj, Obradović N, Pavlović V, Stojanović J, Miličić Lj, Radojević Z, Ristić M. Synthesis and sintering of high-temperature composites based on mechanically activated fly ash. Sci Sint 2012;44:135–146.

  13. Kumar R, Kumar S, Mehrotra S. Towards sustainable solutions for fly ash through mechanical activation. Conserv Recycl. 2007;52:157–79.

    Article  Google Scholar 

  14. Temuujin J, Williams R, van Riessen A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Techn. 2009;209:5276–80.

    Article  CAS  Google Scholar 

  15. Senneca O, Salatino P, Chirone R, Cortese L, Solimene R. Mechanochemical activation of high-carbon fly ash for enhanced carbon reburning. Proc Combust Inst. 2011;33:2743–53.

    Article  CAS  Google Scholar 

  16. Kumar S, Kumar R. Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram Inter. 2011;37:533–41.

    Article  CAS  Google Scholar 

  17. Obradović N, Terzić A, Pavlović Lj, Filipović S, Pavlović V. Dehydration investigations of a refractory concrete using DTA method. J Therm Anal Calorim. 2012;110:37–41.

    Article  Google Scholar 

  18. Inoue T, Okaya K. Grinding mechanism of centrifugal mills—a simulation study based on the discrete element method. Int J Miner Process. 1996;44–45:425–35.

    Article  Google Scholar 

  19. Kheifets A, Lin I. Energy transformations in a planetary grinding mill Part l. General treatment and model design. Int J Miner Process. 1996;47:1–19.

    Article  CAS  Google Scholar 

  20. Shinohara K, Golman B, Uchiyama T, Otani M. Fine-grinding characteristics of hard materials by attrition mill. Powder Technol. 1999;103:292–6.

    Article  CAS  Google Scholar 

  21. Terzić A, Andrić Lj, Mitić V. Assessment of intensive grinding effects on alumina as refractory compound: acceleration of γ to α phase transformation mechanism. Ceram Inter. 2014;40:14851–63.

    Article  Google Scholar 

  22. Andrić Lj. Mica—preparation and application, Monograph. Publ: institute for technology of nuclear and other raw mineral materials, Belgrade 2006 (in Serbian). ISBN: 86-82867-19-2.

  23. Terzić A, Pavlović Lj, Miličić Lj. Evaluation of lignite fly ash for utilization as component in construction materials. Int J Coal Prepar Utiliz. 2013;33:159–80.

    Article  Google Scholar 

  24. ASTM C862-02: standard practice for preparing refractory concrete specimens by casting. 2008.

  25. SRPS EN 1402-5: Unshaped refractory products, Part 5: Preparation and treatment of test pieces. 2009.

  26. SRPS EN 993-1: Methods of test for refractory products, Part 1: Determination of bulk density, apparent porosity and true porosity. 2009.

  27. SRPS EN 993-2: Methods of test for refractory products, Part 2: Determination of true density. 2009.

  28. SRPS EN 993-5: Methods of test for refractory products, Part 5: Determination of crushing strength. 2009.

  29. SRPS EN 993-6: Methods of test for refractory products, Part 6: Determination of modulus of rupture. 2009.

  30. SRPS B.D8.301: Refractories—determination of pyrometric cone equivalent (refractoriness). 1974.

  31. SRPS EN ISO 1893: Refractory products; Determination of refractoriness under load; differential method with rising temperature. 2010.

  32. Blaine R, Kissinger H. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.

    Article  CAS  Google Scholar 

  33. Chen D, Gao X, Dollimore D. A generalized form of the Kissinger equation. Thermochim Acta. 1993;215:109–17.

    Article  CAS  Google Scholar 

  34. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  35. Agresti F. An extended Kissinger equation for near equilibrium solid–gas heterogeneous transformations. Thermochim Acta. 2013;566:214–7.

    Article  CAS  Google Scholar 

  36. Liu F, Liu XN, Wang Q. Examination of Kissinger’s equation for solid-state transformation. J Alloy Compd. 2009;473:152–6.

    Article  CAS  Google Scholar 

  37. Gjorv O. High strength concrete. In: Malhotra VM, editor. Advances in concrete technology. Canada: American Concrete Institute Montreal; 1992. p. 21–77.

  38. Balaz P. Mechanical activation in hydrometallurgy. Int J Miner Process. 2003;72:341–54.

    Article  CAS  Google Scholar 

  39. Chindaprasirt P, Rukzon S. Strength, porosity and corrosion resistance of ternary blend portland cement, rice husk ash and fly ash mortar. Constr Build Mater. 2008;22:1601–6.

    Article  Google Scholar 

  40. Terzić A, Pavlović Lj, Radojević Z, Pavlović V, Mitić V. Novel utilization of fly ash for high-temperature mortars: phase composition, microstructure and performances correlation. Int J Appl Ceram Technol 2013. doi:10.1111/ijac.12135.

  41. Terzić A, Pavlović Lj. Correlation among sintering process, porosity, and creep deformation of refractory concrete. J Mater Sci 2009;44:2844–2850.

  42. Tangpagasit J, Cheerarot R, Jaturapitakkul C, Kiattikomol K. Packing effect and pozzolanic reaction of fly ash in mortar. Cem Concr Res. 2005;35:1145–51.

    Article  CAS  Google Scholar 

  43. Bazant Z, Kaplan M. Concrete at high temperatures. Essex: Longman; 1996.

    Google Scholar 

  44. Blanco F, Garcia M, Ayala J, Mayoral G, Garcia M. The effect of mechanically and chemically activated fly ashes on mortar properties. Fuel. 2006;85:2018–26.

    Article  CAS  Google Scholar 

  45. Oliveira I, Ortega F, Pandolfelli V. Hydration of CAC cement in a castable refractory matrix containing processing additives. Ceram Inter. 2009;35:1545–52.

    Article  CAS  Google Scholar 

  46. Pacewska B, Nowacka M, Wilinska I, Kubissa W, Antonovich V. Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. J Therm Anal Calorim. 2011;105:129–40.

    Article  CAS  Google Scholar 

  47. Tongsheng Z, Qijun Y, Jiangxiong W, Peng G, Pingping Z. Study on optimization of hydration process of blended cement. J Therm Anal Calorim. 2012;107:489–98.

    Article  Google Scholar 

  48. Slanicka S, Madej J, Jakubekova D. DTA contribution to study of hydration fly ash—portland cement pastes. Thermochim Acta. 1985;93(15):601–4.

    Article  CAS  Google Scholar 

  49. Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide—C2AH8. Thermochim Acta. 2007;464:7–15.

    Article  CAS  Google Scholar 

  50. Guo R, Venugopalan D, Rohatgi P. Differential thermal analysis to establish the stability of aluminum-fly ash composites during synthesis and reheating. Mater Sci Eng A. 1998;241:184–90.

    Article  Google Scholar 

  51. Altun İ. Effect of temperature on the mechanical properties of self-flowing low cement refractory concrete. Cem Concr Res. 2001;31(8):1233–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by Serbian Ministry of Education, Science and Technological Development and it was conducted under projects: ON 172057 and III 45008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Terzić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzić, A., Obradović, N., Andrić, L. et al. Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash. J Therm Anal Calorim 119, 1339–1352 (2015). https://doi.org/10.1007/s10973-014-4230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4230-4

Keywords

Navigation