Skip to main content
Log in

Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A binary blend of polypropylene (PP)/recycled polyethylene terephthalate (rPET) and ternary blends of PP/rPET (80/20 w/w) compatibilized with different amounts (5 and 15 mass%, respectively) of a new compatibilizer, PP grafted with maleic anhydride in presence of diallyl phthalate (PP-g-MAH/DAP), are prepared using a twin-screw extruder. The non-isothermal crystallization kinetics and the crystallization morphologies are investigated by differential scanning calorimetry and polarized optical microscopy (POM), respectively. The crystallization temperature and rate of the binary blend increase during the non-isothermal crystallization process, indicating that rPET phase has nucleation ability for crystallization of the PP matrix. However, the crystallization temperatures and rates of the ternary blends slightly decrease because of the chemical reaction between MAH and the rPET terminal groups. Applying the equations proposed by Jeziorny, Ozawa, and Mo to analyze the non-isothermal crystallization kinetics of pure PP and PP in the binary and ternary PP/rPET blends, agreement is found between the experimental results and Mo method. The crystallization activation energy increases in the binary PP/rPET blend, which is ascribed to the confinement effect on the motion of the PP chains by large rPET particles, and this confinement effect is mitigated with the inclusion of PP-g-MAH/DAP. POM observation confirms the heterogeneous nucleation of rPET on PP and the restriction of crystallization of PP by the incorporation of PP-g-MAH/DAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Awaja F, Pavel D. Injection stretch blow moulding process of reactive extruded recycled PET and virgin PET blends. Eur Polym J. 2005;41(11):2614–34.

    Article  CAS  Google Scholar 

  2. Oromiehie A, Mamizadeh A. Recycling PET beverage bottles and improving properties. Polym Int. 2004;53(6):728–32.

    Article  CAS  Google Scholar 

  3. Tao Y, Pan Y, Zhang Z, Mai K. Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in β-nucleated polypropylene/recycled poly (ethylene terephthalate) blends. Eur Polym J. 2008;44(4):1165–74.

    Article  CAS  Google Scholar 

  4. Pracella M, Rolla L, Chionna D, Galeski A. Compatibilization and properties of poly (ethylene terephthalate)/polyethylene blends based on recycled materials. Macromol Chem Phys. 2002;203(10–11):1473–85.

    Article  CAS  Google Scholar 

  5. Bettini SH, de Mello LC, Munoz PA, Ruvolo Filho A. Grafting of maleic anhydride onto polypropylene, in the presence and absence of styrene, for compatibilization of poly (ethylene terephthalate)/(ethylene–propylene) blends. J Appl Polym Sci. 2013;127(2):1001–9.

    Article  CAS  Google Scholar 

  6. Navarro R, Ferrandiz S, Lopez J, Segui V. The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. J Mater Process Technol. 2008;195(1):110–6.

    Article  CAS  Google Scholar 

  7. Lin Z, Shen J, Chen C, Zhang X. Polypropylene/wasted poly (ethylene terephthalate) fabric composites compatibilized by two different methods: crystallization and melting behavior, crystallization morphology, and kinetics. J Appl Polym Sci. 2011;121(4):1972–81.

  8. Tao Y, Mai K. Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly (ethylene terephthalate) blends. Eur Polym J. 2007;43(8):3538–49.

    Article  CAS  Google Scholar 

  9. Taepaiboon P, Junkasem J, Dangtungee R, Amornsakchai T, Supaphol P. In situ microfibrillar-reinforced composites of isotactic polypropylene/recycled poly (ethylene terephthalate) system and effect of compatibilizer. J Appl Polym Sci. 2006;102(2):1173–81.

    Article  CAS  Google Scholar 

  10. Oyman Z, Tincer T. Melt blending of poly (ethylene terephthalate) with polypropylene in the presence of silane coupling agent. J Appl Polym Sci. 2003;89(4):1039–48.

    Article  CAS  Google Scholar 

  11. Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M, Harrass M. Microfibrillar reinforced composites from PET/PP blends: processing, morphology and mechanical properties. Compos Sci Technol. 2005;65(1):107–16.

    Article  CAS  Google Scholar 

  12. Bae TY, Park KY, Kim DH, Suh KD. Poly (ethylene terephthalate)/polypropylene reactive blends through isocyanate functional group. J Appl Polym Sci. 2001;81(5):1056–62.

    Article  CAS  Google Scholar 

  13. Fraisse F, Verney V, Commereuc S, Obadal M. Recycling of poly (ethylene terephthalate)/polycarbonate blends. Polym Degrad Stab. 2005;90(2):250–5.

    Article  CAS  Google Scholar 

  14. Torres N, Robin J, Boutevin B. Chemical modification of virgin and recycled poly (ethylene terephthalate) by adding of chain extenders during processing. J Appl Polym Sci. 2001;79(10):1816–24.

    Article  CAS  Google Scholar 

  15. Awaja F, Daver F, Kosior E, Cser F. The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled PET. J Therm Anal Calorim. 2004;78(3):865–84.

    Article  CAS  Google Scholar 

  16. Dias ML, Nascimento CR. Thermal properties of post-consumer PET processed in presence of phosphites. J Therm Anal Calorim. 2002;69(2):551–9.

    Article  CAS  Google Scholar 

  17. Dullius J, Ruecker C, Oliveira V, Ligabue R, Einloft S. Chemical recycling of post-consumer PET: alkyd resins synthesis. Prog Org Coat. 2006;57(2):123–7.

    Article  CAS  Google Scholar 

  18. Jose S, Aprem A, Francis B, Chandy M, Werner P, Alstaedt V, Thomas S. Phase morphology, crystallisation behaviour and mechanical properties of isotactic polypropylene/high density polyethylene blends. Eur Polym J. 2004;40(9):2105–15.

    Article  CAS  Google Scholar 

  19. Zhang M, Liu Y, Zhang X, Gao J, Huang F, Song Z, Wei G, Qiao J. The effect of elastomeric nano-particles on the mechanical properties and crystallization behavior of polypropylene. Polymer. 2002;43(19):5133–8.

    Article  CAS  Google Scholar 

  20. Li Z-M, Yang W, Li L-B, Xie B-H, Huang R, Yang M-B. Morphology and nonisothermal crystallization of in situ microfibrillar poly (ethylene terephthalate)/polypropylene blend fabricated through slit-extrusion, hot-stretch quenching. J Polym Sci B. 2004;42(3):374–85.

  21. Soccio M, Lotti N, Finelli L, Munari A. Crystallization behavior and morphology of poly(propylene terephthalate) copolymers containing neopenthyl glycol moieties. J Polym Sci B. 2008;46(8):818–30.

    Article  CAS  Google Scholar 

  22. Lu S-F, Chen M, Shih Y-C, Chen CH. Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci B. 2010;48(12):1299–308.

    Article  CAS  Google Scholar 

  23. Lin Z, Chen C, Guan Z, Li M, Guo G, Xian J, Li W. The β-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene-terephthalate) fiber. J Therm Anal Calorim. 2013;114(1):229–37.

    Article  CAS  Google Scholar 

  24. Zhang Z, Chen C, Wang C, Guo J, Mai K. Nonisothermal crystallization kinetics of isotactic polypropylene nucleated with a novel supported β-nucleating agent. J Therm Anal Calorim. 2011;103(1):311–8.

    Article  CAS  Google Scholar 

  25. Zhu Y, Liang C, Bo Y, Xu S. Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate. J Polym Res.

  26. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  27. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  28. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly (aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.

    Article  CAS  Google Scholar 

  29. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  30. Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci B. 2002;40(5):408–14.

    Article  CAS  Google Scholar 

  31. Jafari S, Gupta A. Crystallization behavior of polypropylene in polypropylene/nylon 6 blend. J Appl Polym Sci. 1999;71(7):1153–61.

    Article  CAS  Google Scholar 

  32. Calcagno CI, Mariani CM, Teixeira SR, Mauler RS. Morphology and crystallization behavior of the PP/PET nanocomposites. J Appl Polym Sci. 2009;111(1):29–36.

    Article  CAS  Google Scholar 

  33. Eder M, Wlochowicz A. Kinetics of non-isothermal crystallization of polyethylene and polypropylene. Polymer. 1983;24(12):1593–5.

    Article  CAS  Google Scholar 

  34. Alvarez V, Pérez C. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal Calorim. 2012;107(2):633–43.

    Article  CAS  Google Scholar 

  35. Wang C, Dai W, Zhang Z, Mai K. Effect of blending way on β-crystallization tendency of compatibilized β-nucleated isotactic polypropylene/poly (ethylene terephthalate) blends. J Therm Anal Calorim. 2013;111(2):1585–93.

    Article  CAS  Google Scholar 

  36. Du M, Guo B, Wan J, Zou Q, Jia D. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res. 2010;17(1):109–18.

    Article  CAS  Google Scholar 

  37. Li J, Zhou C, Gang W. Study on nonisothermal crystallization of maleic anhydride grafted polypropylene/montmorillonite nanocomposite. Polym Test. 2003;22(2):217–23.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial supports from Department of Science and Technology of Qinghai Province, Jiangsu Hanneng Electric Co., Ltd. and Shanghai Pujiang Program (D200-81225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Liang, C., Bo, Y. et al. Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends. J Therm Anal Calorim 119, 2005–2013 (2015). https://doi.org/10.1007/s10973-014-4349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4349-3

Keywords

Navigation