Skip to main content
Log in

An investigation into the curing of epoxy powder coating systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, a study of the curing process of carboxyl-terminated polyester-triglycidyl isocyanurate systems is reported. A comparison is made between the generally used differential scanning calorimetric methods and rheokinetic methods, which make use of a parallel plate stress rheometer. The curing kinetics was characterized by a regression equation. The crosslinking process can be considered as a phase transformation. The phase transformation was characterized by the Avrami equation and by the scaling parameters. The glass transition temperature conversion dependence was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee H, Neville K. Handbook of Epoxy-Resins. New York: McGraw Hill; 1967.

    Google Scholar 

  2. Misev A. Powder Coatings, Chemistry and Technology. Chichester: Wiley; 1991.

    Google Scholar 

  3. Schechter L, Wynstra L. Glycidyl ether reactions with alcohols, phenols, carboxylic acids and anhydrides. Ind Eng Chem. 1956;. doi:10.1021/ie50553a029.

    Google Scholar 

  4. Möhler H, Löhr R. Isocyanatvernetzender polyester mit und ohne Beschleuniger, vol. 85. Germany: Farbe and Lack; 1980. p. 165–71.

    Google Scholar 

  5. Dusek K. Network formation in curing of epoxy resins. Adv Polym Sci. 1986;. doi:10.1007/BFb003536.

    Google Scholar 

  6. Vorster OC, Halász L. The use of a rheological technique in the determination of the curing kinetics of a reactive polyester powder coating. The South African Journal of Natural Science and Technology. 2004;23:13–21.

    CAS  Google Scholar 

  7. Hsich HS-Y. Kinetic model of cure reaction and filler effect. J Appl Polym Sci. 1982;27:3265–77.

    Article  CAS  Google Scholar 

  8. Avrami M. Kinetics of phase change: I. General theory. J Chem Phys. 1939;. doi:10.1063/1.1750380.

    Google Scholar 

  9. Avrami M. Kinetics of phase change II. Transformation–time relations for random distribution of nuclei. J Chem Phys. 1940;. doi:10.1063/1.1750631.

    Google Scholar 

  10. Stockmayer WH. Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys. 1943;. doi:10.1063/1.1723803.

    Google Scholar 

  11. Stockmayer WH. Theory of molecular size distribution and gel formation in branched-chain polymers. II. General crosslinking. J Chem Phys. 1943;. doi:10.163/1.1723922.

    Google Scholar 

  12. Winter HH, Chambon F. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol. 1986;. doi:10.1122/1.549853.

    Google Scholar 

  13. Stauffer D. Gelation in concentrated critically branched polymer solutions. J Chem Soc Faraday II. 1976;. doi:10.1039/f29767201354.

    Google Scholar 

  14. Stauffer D, Coniglio A, Adam M. Gelation and critical phenomena. Adv Polym Sci. 1982;. doi:10.1007/3-540-11471-8_4.

    Google Scholar 

  15. Adolf D, Martin JE, Wilcoxon JP. Evolution of structure and viscoelasticity in an epoxy near the sol–gel transition. Macromolecules. 1990;. doi:10.1021/ma00204a028.

    Google Scholar 

  16. Martin JE, Adolf D, Wilcoxon JP. Viscoelasticity of near-critical gels. Phys Rev Lett. 1988;. doi:10.1103/PhysRevLett61.2620.

    Google Scholar 

  17. Martin JE, Adolf D, Wilcoxon JP. Viscoelasticity near the sol–gel transition. Phys Rev A. 1989;. doi:10.1103/PhysRevA.39.1325.

    Google Scholar 

  18. Winter HH, Chambon F. Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol. 1986;. doi:10.1122/1.549853.

    Google Scholar 

  19. Mours M, Winter HH. Time resolved rheometry. Rheol Acta. 1989;. doi:10.1007/BF0036658.

    Google Scholar 

  20. Mours M, Winter HH. Viscoelasticity of polymers during heating/cooling sweeps. Eng Chem Res Ind. 1995;. doi:10.1021/ie00037a006.

    Google Scholar 

  21. Izuka A, Winter HH, Hashimoto T. Molecular weight dependence of viscoelasticity of polyprolactone critical gels. Macromolecules. 1992;. doi:10.1021/ma00035a020.

    Google Scholar 

  22. Izuka A, Winter HH, Hashimoto T. Self-similar relaxation behaviour at the gel point of a blend of a crossslinking poly(ε-caprolactone) diol with a poly(styrene-coacrylonitrile). Macromolecules. 1997;. doi:10.1021/ma961620g.

    Google Scholar 

  23. Mours MM, Winter HH. Relaxation patterns of nearly critical gels. Macromolecules. 1996;. doi:10.1021/ma9517097.

    Google Scholar 

  24. Mours M, Winter HH. Relaxation patterns of nearly critical gels. Macromolecules. 1996;29:7221–8.

    Article  CAS  Google Scholar 

  25. Martin JE, Wilcoxon JP. Critical dynamics of the sol–gel transition. Phys Rev Lett. 1988;. doi:10.1103/PhysRev.Lett61.323.

    Google Scholar 

  26. Muthukumar M. Screening effect on viscoelasticity near the gel point. Macromolercules. 1989;22:4658–64.

    Article  Google Scholar 

  27. Vargha V, Doszlop S, Biró O. Thermal behaviour of triglycidyl-isocyanurate (TGIC) in presence and in absence of polyester. J Therml Anal. 1990;. doi:10.1007/BF01913428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Halász.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halász, L., Belina, K. An investigation into the curing of epoxy powder coating systems. J Therm Anal Calorim 119, 1971–1980 (2015). https://doi.org/10.1007/s10973-015-4411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4411-9

Keywords

Navigation