Skip to main content
Log in

Formation of Ca–Zn–Na phosphate bioceramic material in thermal processing of EDTA sol–gel precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, investigation of the Ca–P–O, Ca:Zn–P–O, Ca:Na–P–O, and Ca:Zn:Na–P–O precursor gels prepared using EDTA as complexing agent and slightly different starting materials was performed. For this purpose, thermal decomposition of the gels was studied by TG/DTA-EGA/MS with following evolvement of H2O, CO2, NH3, and NOx gases. Besides, thermal decomposition products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, and scanning electron microscopy. It was demonstrated that thermal decomposition of Ca–P–O acetate and Ca:Zn–P–O, Ca:Zn:Na–P–O acetate-nitrate gels is different. Thus, the results of thermal decomposition of Ca:Zn–P–O and Ca:Zn:Na–P–O gels showed that Zn and Na additives accelerate decomposition of the gels. In addition, Na substitution at Ca sites creates conditions for the formation of the orthophosphate composites at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8:963–77.

    Article  CAS  Google Scholar 

  2. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.

    Article  CAS  Google Scholar 

  3. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994.

    Google Scholar 

  4. Le Geros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.

    Article  Google Scholar 

  5. Gross KA, Komarovska L, Viksna A. Efficient zinc incorporation in hydroxyapatite through crystallization of an amorphous phase could extend the properties of zinc apatites. J Aust Ceram Soc. 2013;49:129–35.

    CAS  Google Scholar 

  6. Hermandez-Sierra JF, Ruiz F, Pena DCC, Martinez-Gutierrez F, Martinez AE, Guillen ADP, Tapia-Perez H, Castanon GM. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008;4:237–40.

    Article  Google Scholar 

  7. Zhang J, Tanaka H, Ye F, Jiang D, Iwasa M. Colloidal processing and sintering of Hydroxyapatite. Mater Chem Phys. 2007;101:69–76.

    Article  CAS  Google Scholar 

  8. Cai S, Yu X, Xiao Z, Xu G, Lv H, Yao K. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceram Int. 2007;33:193–6.

    Article  CAS  Google Scholar 

  9. Bogdanoviciene I, Beganskiene A, Kareiva A, Juskenas R, Selskis A, Ramanauskas R, Tonsuaadu K, Mikli V. Influence of heating conditions on the formation of sol–gel derived calcium hydroxyapatite. Chemija. 2010;21:98–105.

    CAS  Google Scholar 

  10. Bogdanoviciene I, Tonsuaadu K, Mikli V, Grigoraviciute-Puroniene I, Beganskiene A, Kareiva A. pH impact on the sol–gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent DCTA. Cent Eur J Chem. 2010;8:1323–30.

    Article  CAS  Google Scholar 

  11. Pullen LJ, Gross KA. Dissolution and mineralization of sintered and thermally sprayed hydroxy-fluoroapatites. J Mater Sci Mater Med. 2005;16:399–404.

    Article  CAS  Google Scholar 

  12. Brinker CJ, Scherrer GW. Sol–gel science: the physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  13. Bigi A, Boanini E, Rubini K. Hydroxyapatite gels and nanocrystals prepared through a sol–gel process. J Solid State Chem. 2004;177:3092–8.

    Article  CAS  Google Scholar 

  14. Tônsuaadu K, Peld M, Leskela T. A thermoanalytical study of synthetic carbonate containing apatites. Thermochim Acta. 1995;256:55–65.

    Article  Google Scholar 

  15. Bogdanoviciene I, Beganskiene A, Tonsuaadu K, Glaser J, Meyer HJ, Kareiva A. Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Mater Res Bull. 2006;41:1754–62.

    Article  CAS  Google Scholar 

  16. Varma HK, Suresh Babu S. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int. 2005;31:109–14.

    Article  CAS  Google Scholar 

  17. Materazzi S, Vecchio S. Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev. 2011;46:261–340.

    Article  Google Scholar 

  18. Berzina-Cimdina L, Borodajenko N. Research of calcium phosphates using Fourier transform infrared spectroscopy. In: Theophile T (editor) Infrared spectroscopy–Materials Science, Engineering and Technology. 2012. doi:10.5772/36942. Available from http://www.intechopen.com/books/infrared-spectroscopy-materials-science-engineering-and-technology/research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy.

  19. Chen J, Wang Y, Chen X, Ren L, Lai Ch, He W, Zhang Q. A simple sol–gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett. 2011;65:1923–6.

    Article  CAS  Google Scholar 

  20. Antonakos A, Liarokapis E, Leventouri Th. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomater. 2007;28:3043–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant No. ERMOS 131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irma Bogdanoviciene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanoviciene, I., Cepenko, M., Traksmaa, R. et al. Formation of Ca–Zn–Na phosphate bioceramic material in thermal processing of EDTA sol–gel precursor. J Therm Anal Calorim 121, 107–114 (2015). https://doi.org/10.1007/s10973-015-4507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4507-2

Keywords

Navigation