Skip to main content
Log in

Mononuclear complexes based on reduced Schiff base derived from l-methionine, synthesis, characterization, thermal and in vitro antimicrobial studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Cu(II), Co(II), Ni(II), Mn(II) Zn(II) and Cd(II) metal ion complexes based on (3,5-di-tert-butyl-2-hydroxybenzylamino)-3-(methylthio) propenoic acid (H3L) have been synthesized and characterized via elemental analyses, spectral (infrared (IR), 13CNMR, 1HNMR, UV–visible and mass), thermal analysis, magnetic moment and molar conductance. The analytical, spectroscopic and magnetic moment data suggest octahedral geometry for all complexes. The TG profile consists of four discreet stages. The complexes also were screened for their antibacterial and antifungal activity against four types of bacterial species (Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Bacillus subtillis) and two types of antifungal infections (Aspergillus flavus and Candida Albicans).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alghool S, El-Halim HFA, El-sadek MA, Yahia I, Wahab L. Synthesis, thermal characterization, and antimicrobial activity of lanthanum, cerium, and thorium complexes of amino acid Schiff base ligand. J Therm Anal Calorim. 2013;112:671–81.

    Article  CAS  Google Scholar 

  2. Alghool S, Zoromba MS, El-Halim HFA. Lanthanide amino acid Schiff base complexes: synthesis, spectroscopic characterization, physical properties and in vitro antimicrobial studies. J Rare Earth. 2013;31:715–21.

    Article  CAS  Google Scholar 

  3. Sarkar S, Mondal A, El Fallah MS, Ribas J, Chopra D, Stoeckli-Evans H, et al. Synthesis, structure and magnetic properties of two end-on double azido bridged nickel(II) dinuclear entities incorporating N, N, N-coordinating tridentate reduced Schiff base ligands. Polyhedron. 2006;25:25–30.

    Article  CAS  Google Scholar 

  4. Sreenivasulu B, Vittal JJ. Hydrogen-bonded copper(II) and nickel(II) complexes and coordination polymeric structures containing reduced Schiff base ligands. Inorg Chim Acta. 2009;362:2735–43.

    Article  CAS  Google Scholar 

  5. Alghool S, Slebodnick C. Supramolecular structures of mononuclear and dinuclear dioxomolybdenum(VI) complexes via hydrogen bonds and π–π stacking, thermal studies and electrochemical measurements. Polyhedron. 2014;67:11–8.

    Article  CAS  Google Scholar 

  6. Aminabhavi T, Biradar N, Patil S, Roddabasanagoudar V, Rudzinski W. Amino acid schiff base complexes of dimethyldichlorosilane. Inorg Chim Acta. 1985;107:231–4.

    Article  CAS  Google Scholar 

  7. Kannan S, Sivagamasundari M, Ramesh R, Liu Y. Ruthenium(II) carbonyl complexes of dehydroacetic acid thiosemicarbazone: synthesis, structure, light emission and biological activity. J Organomet Chem. 2008;693:2251–7.

    Article  CAS  Google Scholar 

  8. Muppidi VK, Zacharias PS, Pal S. Self-assembly of a pseudo-tetrahedral Zn(II) complex with a chiral reduced Schiff base into a helical superstructure. Inorg Chem Commun. 2005;8:543–7.

    Article  CAS  Google Scholar 

  9. Liu Y-Y, Wang Z-H, Yang J, Liu B, Liu Y-Y, Ma J-F. A series of coordination polymers based on reduced Schiff base multidentate anions and bis (imidazole) ligands: syntheses, structures and photoluminescence. CrystEngComm. 2011;13:3811–21.

    Article  CAS  Google Scholar 

  10. Yang CT, Moubaraki B, Murray KS, Ranford JD, Vittal JJ. Interconversion of a monomer and two coordination polymers of a copper(II)-reduced Schiff base ligand-1, 10-phenanthroline complex based on hydrogen-and coordinative-bonding. Inorg Chem. 2001;40:5934–41.

    Article  CAS  Google Scholar 

  11. Banerjee S, Drew MG, Lu CZ, Tercero J, Diaz C, Ghosh A. Dinuclear complexes of MII thiocyanate (M = Ni and Cu) containing a tridentate schiff-base ligand: synthesis, structural diversity and magnetic properties. Eur J Inorg Chem. 2005;2005:2376–83.

    Article  Google Scholar 

  12. Costes J-P, Dahan F, Dupuis A. Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3· n H2O complexes (LH2 standing for tetradentate schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X Being Cl, N3C2, and CF3COO). Inorg Chem. 2000;39:165–8.

    Article  CAS  Google Scholar 

  13. Wang C, Liu S, Sun C, Xie L. Hydrothermal synthesis, crystal structure and fluorescence of a 3D organic–inorganic hybrid coordination network [CuI (4,4′-bipy)] 4 [δ-Mo8O26] exhibiting an interesting polymorphism. J Coord Chem. 2008;61:891–9.

    Article  CAS  Google Scholar 

  14. Lece HD, Emregül KC, Atakol O. Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors. Corros Sci. 2008;50:1460–8.

    Article  CAS  Google Scholar 

  15. Ngan NK, Lo KM, Wong CSR. Dinuclear and polynuclear dioxomolybdenum (VI) Schiff base complexes: synthesis, structural elucidation, spectroscopic characterization, electrochemistry and catalytic property. Polyhedron. 2012;33:235–51.

    Article  CAS  Google Scholar 

  16. Saghatforoush LA, Aminkhani A, Chalabian F. Iron(III) Schiff base complexes with asymmetric tetradentate ligands: synthesis, spectroscopy, and antimicrobial properties. Transition Met Chem. 2009;34:899–904.

    Article  CAS  Google Scholar 

  17. Soliman A. Thermogravimetric and spectroscopic studies on cadmium complexes with two salicylidene thiophenol Schiff bases. J Therm Anal Calorim. 2001;63:221–31.

    Article  CAS  Google Scholar 

  18. Thankamony M, Kumari BS, Rijulal G, Mohanan K. Lanthanum(III) chloride complexes with heterocyclic Schiff bases. J Therm Anal Calorim. 2009;95:259–66.

    Article  CAS  Google Scholar 

  19. Qu J, Yi Y-L, Hu Y-M, Chen W-T, Gao H-L, Cui J-Z, et al. Syntheses, structures, and photo-luminescence of three silver complexes with N-heterocyclic multicarboxylic acids and 4, 4′-bipyridine. J Coord Chem. 2012;65:3740–51.

    Article  CAS  Google Scholar 

  20. You Z-L, Shi D-H, Xu C, Zhang Q, Zhu H-L. Schiff base transition metal complexes as novel inhibitors of xanthine oxidase. Eur J Med Chem. 2008;43:862–71.

    Article  CAS  Google Scholar 

  21. You Z-L, Shi D-H, Zhu H-L. The inhibition of xanthine oxidase by the Schiff base zinc(II) complex. Inorg Chem Commun. 2006;9:642–4.

    Article  CAS  Google Scholar 

  22. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C. A cap-type Schiff base acting as a fluorescence sensor for zinc(II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans. 2013;42:16569–77.

    Article  CAS  Google Scholar 

  23. Chundawat N, Pandya M, Dangi R. Synthesis and characterization of schiff’s bases. 2014.

  24. Güngör Ö, Gürkan P. Synthesis and characterization of higher amino acid Schiff bases, as monosodium salts and neutral forms. Investigation of the intramolecular hydrogen bonding in all Schiff bases, antibacterial and antifungal activities of neutral forms. J Mol Struct. 2014.

  25. Adsule S, Barve V, Chen D, Ahmed F, Dou QP, Padhye S, et al. Novel Schiff base copper complexes of quinoline-2 carboxaldehyde as proteasome inhibitors in human prostate cancer cells. J Med Chem. 2006;49:7242–6.

    Article  CAS  Google Scholar 

  26. Kulkarni A, Patil SA, Badami PS. Synthesis, characterization, DNA cleavage and in vitro antimicrobial studies of La(III), Th(IV) and VO(IV) complexes with Schiff bases of coumarin derivatives. Eur J Med Chem. 2009;44:2904–12.

    Article  CAS  Google Scholar 

  27. Patil SA, Unki SN, Kulkarni AD, Naik VH, Kamble U, Badami PS. Spectroscopic, in vitro antibacterial, and antifungal studies of Co(II), Ni(II), and Cu(II) complexes with 4-chloro-3-coumarinaldehyde Schiff bases. J Coord Chem. 2011;64:323–36.

    Article  CAS  Google Scholar 

  28. Singh K, Barwa MS, Tyagi P. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone. Eur J Med Chem. 2006;41:147–53.

    Article  Google Scholar 

  29. Sinha D, Tiwari AK, Singh S, Shukla G, Mishra P, Chandra H, et al. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008;43:160–5.

    Article  CAS  Google Scholar 

  30. Alam MS, Choi J-H, Lee D-U. Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Biorg Med Chem. 2012;20:4103–8.

    Article  CAS  Google Scholar 

  31. Das K, Datta A, Liu P-H, Huang J-H, Hsu C-L, Chang W-T, et al. Structural characterization of cobalt(II) complexes of an N, O donor Schiff base and their activity on carcinoma cells. Polyhedron. 2014;71:85–90.

    Article  CAS  Google Scholar 

  32. Liu W-L, Zou Y, Ni C-L, Ni Z-P, Li Y-Z, Yao Y-G, et al. Synthesis and characterization of copper(II) Schiff base complexes derived from salicylaldehyde and glycylglycylglycine. Polyhedron. 2004;23:849–55.

    Article  CAS  Google Scholar 

  33. Luo R, Tang L, Zhong S, Yang Z, Wang J, Weng Y, et al. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl Mater Interfaces. 2013;5:1704–14.

    Article  CAS  Google Scholar 

  34. Y-j Yan, Yin F, Chen J, Zhang H-L, Yan B-L, Jiang Y-Z, et al. Supramolecular copper(II) complexes of novel Schiff bases derived from β-amino acid and salicylaldehyde: syntheses, crystal structure, and magnetic property. Inorg Chim Acta. 2014;413:84–9.

    Article  Google Scholar 

  35. Zhang Y, Li J, Gao F, Kang F, Wang X, Ye F, et al. Electropolymerization and electrochemical performance of salen-type redox polymer on different carbon supports for supercapacitors. Electrochim Acta. 2012;76:1–7.

    Article  CAS  Google Scholar 

  36. Zuo J, Bi C, Fan Y, Buac D, Nardon C, Daniel KG, et al. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base–copper complexes. J Inorg Biochem. 2013;118:83–93.

    Article  CAS  Google Scholar 

  37. Gheorghe R, Andruh M, Müller A, Schmidtmann M. Heterobinuclear complexes as building blocks in designing extended structures. Inorg Chem. 2002;41:5314–6.

    Article  CAS  Google Scholar 

  38. Goswami TK, Roy M, Nethaji M, Chakravarty AR. Photoinduced DNA and protein cleavage activity of ferrocene-appended l-methionine reduced Schiff base copper(II) complexes of phenanthroline bases. Organometallics. 2009;28:1992–4.

    Article  CAS  Google Scholar 

  39. Chen Z, Morimoto H, Matsunaga S, Shibasaki M. A bench-stable homodinuclear Ni2-Schiff base complex for catalytic asymmetric synthesis of α-tetrasubstituted anti-α, β-diamino acid surrogates. J Am Chem Soc. 2008;130:2170–1.

    Article  CAS  Google Scholar 

  40. Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M. Catalytic asymmetric synthesis of 3-aminooxindoles: enantiofacial selectivity switch in bimetallic vs monometallic schiff base catalysis. J Am Chem Soc. 2010;132:1255–7.

    Article  CAS  Google Scholar 

  41. O’Donnell MJ. The enantioselective synthesis of α-amino acids by phase-transfer catalysis with achiral Schiff base esters. Acc Chem Res. 2004;37:506–17.

    Article  Google Scholar 

  42. Corriu RJ, Lancelle-Beltran E, Mehdi A, Reyé C, Brandès S, Guilard R. Ordered mesoporous hybrid materials containing cobalt(II) Schiff base complex. J Mater Chem. 2002;12:1355–62.

    Article  CAS  Google Scholar 

  43. He Y, Cai C. Polymer-supported macrocyclic Schiff base palladium complex: an efficient and reusable catalyst for Suzuki cross-coupling reaction under ambient condition. Catal Commun. 2011;12:678–83.

    Article  CAS  Google Scholar 

  44. Trujillo A, Fuentealba M, Carrillo D, Manzur C, Ledoux-Rak I, Hamon J-R, et al. Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor–acceptor substituted nickel(II) and copper(II) unsymmetrical schiff-base complexes. Inorg Chem. 2010;49:2750–64.

    Article  CAS  Google Scholar 

  45. Ran X, Wang L, Cao D, Lin Y, Hao J. Synthesis, characterization and in vitro biological activity of cobalt(II), copper(II) and zinc(II) Schiff base complexes derived from salicylaldehyde and DL-selenomethionine. Appl Organomet Chem. 2011;25:9–15.

    Article  CAS  Google Scholar 

  46. Champin B, Mobian P, Sauvage J-P. Transition metal complexes as molecular machine prototypes. Chem Soc Rev. 2007;36:358–66.

    Article  CAS  Google Scholar 

  47. Williams NH, Takasaki B, Wall M, Chin J. Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc Chem Res. 1999;32:485–93.

    Article  CAS  Google Scholar 

  48. Youssef NS, El-Zahany E, El-Seidy A, Caselli A, Fantauzzi S, Cenini S. Synthesis and characterisation of new Schiff base metal complexes and their use as catalysts for olefin cyclopropanation. Inorg Chim Acta. 2009;362:2006–14.

    Article  CAS  Google Scholar 

  49. Gupta R, Saxena R, Chaturvedi P, Virdi J. Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J Appl Bacteriol. 1995;78:378–83.

    Article  CAS  Google Scholar 

  50. Alghool S, El-Halim HFA, Dahshan A. Synthesis, spectroscopic thermal and biological activity studies on azo-containing Schiff base dye and its Cobalt(II), Chromium(III) and Strontium(II) complexes. J Mol Struct. 2010;983:32–8.

    Article  CAS  Google Scholar 

  51. Mohamed GG, El-Wahab ZA. Salisaldehyde-2-aminobenzimidazole schiff base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). J Therm Anal Calorim. 2003;73:347–59.

    Article  CAS  Google Scholar 

  52. Olmez H, Arslan F, Icbudak H. Spectrothermal studies on Co(II), Ni(II), Cu(II) and Zn(II) salicylato (1, 10-phenanthroline) complexes. J Therm Anal Calorim. 2004;76:793–800.

    Article  CAS  Google Scholar 

  53. Ciampolini M, Nardi N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with Tris (2-dimethylaminoethyl) amine. Inorg Chem. 1966;5:41–4.

    Article  CAS  Google Scholar 

  54. Thompson LK, Zhao L, Xu Z, Miller DO, Reiff WM. Self-assembled supramolecular M9 (Mn(II), Fe(III), Zn(II)), M5 (Fe(III)), and [M3] 2 (Pb(II)) complexes: structural, magnetic, and Mössbauer properties. Inorg Chem. 2003;42:128–39.

    Article  CAS  Google Scholar 

  55. Rombach M, Gelinsky M, Vahrenkamp H. Coordination modes of aminoacids to zinc. Inorg Chim Acta. 2002;334:25–33.

    Article  CAS  Google Scholar 

  56. Zhang K-L, Chang Y, Ng SW. Preparation and characterization of two supramolecular complexes with 5-amino-2, 4, 6-triiodoisophthalic acid under N-donor auxiliary ligand intervention. Inorg Chim Acta. 2011;368:49–57.

    Article  CAS  Google Scholar 

  57. Maurya R, Patel P, Rajput S. Synthesis and characterization of mixed-ligand complexes of Cu(II), Ni(II), Co(II), Zn(II), Sm(III), and U(VI) O2, with a Schiff Base Derived from the sulfa drug sulfamerazine and 2, 2′-Bipyridine. Synth React Inorg Met-Org Chem. 2003;33:801–16.

    Article  CAS  Google Scholar 

  58. Pozas-Tormo R, Moreno-Real L, Martínez-Lara M, Rodríguez-Castellón E. Ion exchange reactions of n-butylamine intercalates of tin(IV) hydrogen phosphate and hydrogen uranyl phosphate with cobalt(III) complexes. Can J Chem. 1986;64:35–9.

    Article  CAS  Google Scholar 

  59. Sues PE, Lough AJ, Morris RH. Stereoelectronic factors in iron catalysis: synthesis and characterization of aryl-substituted iron(II) carbonyl p–n–n–p complexes and their use in the asymmetric transfer hydrogenation of ketones. Organometallics. 2011;30:4418–31.

    Article  CAS  Google Scholar 

  60. Szorcsik A, Nagy L, Sletten J, Szalontai G, Kamu E, Fiore T, et al. Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono-and dicarboxylic acids. J Organomet Chem. 2004;689:1145–54.

    Article  CAS  Google Scholar 

  61. Samanta B, Chakraborty J, Choudhury C, Dey S, Dey D, Batten S, et al. New Cu(II) complexes with polydentate chelating Schiff base ligands: synthesis, structures, characterisations and biochemical activity studies. Struct Chem. 2007;18:33–41.

    Article  CAS  Google Scholar 

  62. Alghool S. Metal complexes of azo coumarin derivative: synthesis, spectroscopic, thermal, and antimicrobial studies. J Coord Chem. 2010;63:3322–33.

    Article  CAS  Google Scholar 

  63. Mohanan K, Thankamony M, Kumari BS. Synthesis, spectroscopic characterization, and thermal decomposition kinetics of some lanthanide(III) nitrate complexes of 2-(N-o-hydroxyacetophenone) amino-3-carboxyethyl-4, 5, 6, 7-tetrahydrobenzo [b] thiophene. J Rare Earth. 2008;26:463–8.

    Article  Google Scholar 

  64. Alghool S, Slebodnick C, Karpin G. Supramolecular structure of Cu(II) and Zn(II) complexes based on 2, 2′: 6′, 2″-terpyridine, thermal and biological studies. J Thermal Anal Calorim. 119:1171–1182.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Alghool.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghool, S. Mononuclear complexes based on reduced Schiff base derived from l-methionine, synthesis, characterization, thermal and in vitro antimicrobial studies. J Therm Anal Calorim 121, 1309–1319 (2015). https://doi.org/10.1007/s10973-015-4610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4610-4

Keywords

Navigation