Skip to main content
Log in

Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The calcined gypsum–lime–metakaolin–water system and its subsystems consisting of two and three components are analyzed using the isothermal heat flow calorimetry, differential scanning calorimetry, and thermogravimetry. The hydration heat development in the initial hydration phase up to several hours is monitored in a common way, on the samples having a mass of about 1 g. In later time intervals up to 1 week when the values of the specific hydration heat power are very low, a large-volume calorimeter with better resolution is used for 300 g samples. The thermal analysis is carried out with the specimens undergoing hydration for the time periods of one to 8 days. The isothermal heat flow calorimetry shows that in the analyzed system and its subsystems, the majority of hydration heat is evolved during ~1.5 h after beginning of the hydration process. After 25 h, measurable amounts of hydration heat are produced in the gypsum–lime–metakaolin and metakaolin–lime mixes only, indicating a pozzolanic reaction in progress. In both these mixes, the differential scanning calorimetry reveals seven endothermic peaks corresponding to the thermal decomposition processes occurring during the heating up to 1000 °C. After 8 days of hydration, all Ca(OH)2 is found missing in the gypsum–lime–metakaolin and metakaolin–lime mixtures, which points to the completion of the pozzolanic reaction. The results obtained by the differential scanning calorimetry are well correlated with the mass changes measured by thermogravimetry and derivative thermogravimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tydlitát V, Medveď I, Černý R. Determination of partial phase composition in calcined gypsum by calorimetric analysis of hydration kinetics. J Therm Anal Calorim. 2012;109:57–62.

    Article  Google Scholar 

  2. Vimmrová A, Keppert M, Michalko O, Černý R. Calcined gypsum–lime–metakaolin binders: design of optimal composition. Cement Concrete Compos. 2014;52:91–6.

    Article  Google Scholar 

  3. Carlson ET. Hydrogarnet formation in the system lime–alumina–silica–water. J Res Nat Bur Stand. 1956;56:327–35.

    Article  CAS  Google Scholar 

  4. McZura G, Hart LD, Heilich RP, Kopanda JE. Refractory cements. In: Proceedings of the raw materials for refractories conference, Feb. 8–9, 1982. The University of Alabama, Alabama, 1982, p. 46–67.

  5. Serry MA, Taha MS, El-Hemaly SAS, El-Didamony H. Metakaolin-lime hydration products. Thermochim Acta. 1984;79:103–10.

    Article  CAS  Google Scholar 

  6. Ropp RC. Encyclopedia of the alkaline earth compounds. London: Elsevier; 2013.

    Google Scholar 

  7. Murat M. Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary investigations of metakaolinite. Cement Concrete Res. 1983;13:259–66.

    Article  CAS  Google Scholar 

  8. Hewlett P. Lea´s chemistry of cement. 4th ed. Butterworth: Heinemann; 2004.

    Google Scholar 

  9. Cabrera J, Rojas MF. Mechanism of hydration of the metakaolin–lime–water system. Cement Concrete Res. 2001;31:177–82.

    Article  CAS  Google Scholar 

  10. Rojas MF, Cabrera J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin–lime–water systems. Cement Concrete Res. 2002;32:133–8.

    Article  CAS  Google Scholar 

  11. Dojkov I, Stojanov S, Ninov J, Petrov B. On the consumption of lime by metakaolin, fly ash and kaoline in model systems. J. Chem. Technol. Metall. 2013;48:54–60.

    CAS  Google Scholar 

  12. Ninov J, Doykov I, Dimova L, Petrov B, Brakalov L. On the kinetics of pozzolanic reaction in metakaolin–lime–water system. J Therm Anal Calorim. 2011;105:245–50.

    Article  CAS  Google Scholar 

  13. Antonovič V, Kariné J, Boris R, Aleknevičius M. The effect of temperature on the formation of the hydrated calcium aluminate cement structure. Procedia Eng. 2013;57:99–106.

    Article  Google Scholar 

  14. Abdi MR, Wild S. Sulphate expansion of lime stabilized kaolinite. Part I: physical characteristics. Clay Miner. 1993;28:555–67.

    Article  CAS  Google Scholar 

  15. Wild S, Abdi MR, Leng-Ward G. Sulphate expansion of lime stabilized kaolinite, Part II: reaction products and expansion. Clay Miner. 1993;28:569–83.

    Article  CAS  Google Scholar 

  16. Tydlitát V, Tesárek P, Černý R. Effects of the type of calorimeter and the use of plasticizers and hydrophobizers on the measured hydration heat development of FGD gypsum. J Therm Anal Calorim. 2008;91:791–6.

    Article  Google Scholar 

  17. Tydlitát V, Zákoutský J, Černý R. An isothermal heat flow calorimeter for large-volume applications. J Therm Anal Calorim. 2012;110:1021–7.

    Article  Google Scholar 

  18. Wirsching F. Calcium sulfate, ullmanns encyclopedia of industrial chemistry, vol. 6. Weinheim: Wiley-VCH Verlag; 1983.

  19. Tydlitát V, Medveď I, Černý R. Determination of a partial phase composition in calcined gypsum by calorimetric analysis of hydration kinetics. J Therm Anal Calorim. 2012;109:57–62.

    Article  Google Scholar 

  20. Lothenbach B, Pelletier-Chaignal L, Winnefeld F. Stability in the system CaO–Al2O3–H2O. Cement Concrete Res. 2012;42:1621–34.

    Article  CAS  Google Scholar 

  21. Christensen AN, Jensen TR, Lebech B, Hanson JC, Jakobsen HJ, Skibsted J. Thermal decomposition of monocalcium aluminate decahydrate (CaAlO4.10H2O) investigated by in situ synchrotron X-ray powder diffraction, thermal analysis and 27Al, 2H MAS NMR spectroscopy. Dalton T. 2008;4:455–62.

  22. Guirado F, Galí S, Chinchón JS. Thermal decomposition of hydrated alumina cement (CAH10). Cement Concrete Res. 1998;28:381–90.

    Article  CAS  Google Scholar 

  23. Ukrainczyk N, Matusovic S, Kurajica S, Zimmermann B, Sipusic J. Dehydration of layered double hydroxide—C2AH8. Thermochim Acta. 2007;464:7–15.

    Article  CAS  Google Scholar 

  24. Kuusik R, Saikkonen P, Niinistö L. Thermal decomposition of calcium sulfate in carbon monoxide. J Therm Anal. 1985;30:187–93.

    Article  CAS  Google Scholar 

  25. Clifton JR. Thermal analysis of calcium sulfate dihydrate and supposed α and β forms of calcium sulphate hemihydrate from 25 to 500 °C. J Res Nat Bur Stand. 1972;76A:41–9.

    Article  Google Scholar 

  26. Esteves LP. On the hydration of water–entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.

    Article  CAS  Google Scholar 

  27. Sha W, O’Neill EA, Guo Z. Differential scanning calorimetry study of ordinary Portland cement. Cement Concrete Res. 1999;29:1487–9.

    Article  CAS  Google Scholar 

  28. Sha W, Pereira GB. Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement Concrete Comp. 2001;23:455–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation, under Project No P105/12/G059. One of the authors (R.P.) gratefully acknowledges a financial support from the project “PROMATECH” ITMS No: 26220220186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Černý.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tydlitát, V., Trník, A., Scheinherrová, L. et al. Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system. J Therm Anal Calorim 122, 115–122 (2015). https://doi.org/10.1007/s10973-015-4727-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4727-5

Keywords

Navigation