Skip to main content
Log in

Impact of foaming air on melting and crystallization behaviors of microporous PLA scaffolds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is a green synthetic polymer which has many excellent properties useful for various applications. In this study, PLA scaffolds were fabricated at 2.0–6.0 MPa saturation pressures by using a solvent-free solid-state air gas foaming technique. Differential scanning calorimetry analysis was used to investigate the melting behavior and the mechanism of isothermal crystallization kinetics of these PLA scaffolds. Kinetics theories, such as Avrami analysis which was established for crystal growth studies of synthetic polymers, are for the first time utilized to investigate the air gas foamed scaffolds. Results showed that 6.0 MPa scaffolds had a 3D spherulitic crystal growth kinetics which is different from the raw PLA and 3.0 MPa foams. The experimental results also proved that two types of crystals: defective α′ and stable α coexisted in the PLA foams, and the contents of these two crystals were varied at different isothermal crystallization temperatures. Compared with the raw PLA, the crystallinities of PLA foams increased slightly after isothermal crystallization. However, the air gas molecules also hindered the crystallization rates of PLA foams. In addition, single crystals or perfect large crystals with α-form can be produced at a high isothermal crystallization temperature, such as 110 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsuji H, Ikada Y. Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(E-caprolactone) in phosphate-buffered solution. J Appl Polym Sci. 1998;67(3):405–15.

    Article  CAS  Google Scholar 

  2. Martin O, Averous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42(14):6209–19.

    Article  CAS  Google Scholar 

  3. Xiao H, Yang L, Ren X, Jiang T, Yeh J-T. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos. 2010;31(12):2057–68.

    Article  CAS  Google Scholar 

  4. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4(9):835–64.

    Article  CAS  Google Scholar 

  5. Sanandaji N, Bretzler V, Schmelter S, Olsson RT, Hedenqvist MS, Gedde UW. Confined space crystallisation of poly(epsilon-caprolactone) in controlled pore glasses. Eur Polym J. 2013;49(8):2073–81.

    Article  CAS  Google Scholar 

  6. Xiao H, Lu W, Yeh J-T. Effect of plasticizer on the crystallization behavior of poly(lactic acid). J Appl Polym Sci. 2009;113(1):112–21.

    Article  CAS  Google Scholar 

  7. Wang YM, Xu YM, He DR, Yao W, Liu CT, Shen CY. “Nucleation density reduction” effect of biodegradable cellulose acetate butyrate on the crystallization of poly(lactic acid). Mater Lett. 2014;128(1):85–8.

    CAS  Google Scholar 

  8. Haubruge HG, Daussin R, Jonas AM, Legras R. Epitaxial nucleation of poly(ethylene terephthalate) by talc: structure at the lattice and lamellar scales. Macromolecules. 2003;36(12):4452–6.

    Article  CAS  Google Scholar 

  9. Kolstad JJ. Crystallization kinetics of poly(L-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62(7):1079–91.

    Article  CAS  Google Scholar 

  10. Xiao HW, Li P, Ren X, Jiang T, Yeh J-T. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci. 2010;118(6):3558–69.

    Article  CAS  Google Scholar 

  11. Saeidlou S, Huneault MA, Li HB, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37(12):1657–77.

    Article  CAS  Google Scholar 

  12. Jandas PJ, Mohanty S, Nayak SK. Thermal properties and cold crystallization kinetics of surface-treated banana fiber (BF)-reinforced poly(lactic acid) (PLA) nanocomposites. J Therm Anal Calorim. 2013;114(3):1265–78.

    Article  CAS  Google Scholar 

  13. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ, Loo YY. Effect of graphene nanoplatelets as nanofiller in plasticized poly(lactic acid) nanocomposites. J Therm Anal Calorim. 2014;118(3):1551–9.

    Article  CAS  Google Scholar 

  14. Day M, Nawaby AV, Liao X. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J Therm Anal Calorim. 2006;86(3):623–9.

    Article  CAS  Google Scholar 

  15. Leung SN, Wong A, Guo QP, Park CB, Zong JH. Change in the critical nucleation radius and its impact on cell stability during polymeric foaming processes. Chem Eng Sci. 2009;64(23):4899–907.

    Article  CAS  Google Scholar 

  16. Guo ZH, Lee J, Tomasko DL. CO2 permeability of polystyrene nanocomposites and nanocomposite foams. Ind Eng Chem Res. 2008;47(23):9636–43.

    Article  CAS  Google Scholar 

  17. Baldwin DF, Park CB, Suh NP. A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: microcell nucleation. Polym Eng Sci. 1996;36(11):1437–45.

    Article  CAS  Google Scholar 

  18. Wang F, Guo GP, Ma QY, Gu MF, Wu XY, Sheng SJ, Wang XS. Investigation on the thermo-mechanical properties and thermal stability of polylacticacid tissue engineering scaffold material. J Therm Anal Calorim. 2013;113(3):1113–21.

    Article  CAS  Google Scholar 

  19. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N. Crystallization and melting behavior of poly (L-lactic acid). Macromolecules. 2007;40(26):9463–9.

    Article  CAS  Google Scholar 

  20. Zhang J, Tashiro K, Domb AJ, Tsuji H. Confirmation of disorder a form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp. 2006;242(1):274–8.

    Article  CAS  Google Scholar 

  21. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 1982;23(11):1587–93.

    Article  CAS  Google Scholar 

  22. Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer. 2000;41(25):8909–19.

    Article  CAS  Google Scholar 

  23. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41(4):1352–7.

    Article  CAS  Google Scholar 

  24. Di Lorenzo ML, Cocca M, Malinconico M. Crystal polymorphism of poly(l-lactic acid) and its influence on thermal properties. Thermochim Acta. 2011;522(1–2):110–7.

    Article  Google Scholar 

  25. Wang X, Kumar V, Li W. Low density sub-critical CO2-blown solid-state PLA foams. Cell Polym. 2007;26(1):11–35.

    Google Scholar 

  26. Wang X, Li W, Kumar V. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials. 2006;27(9):1924–9.

    Article  CAS  Google Scholar 

  27. Guo GP, Ma QY, Wang F, Zhao B, Zhang D. Kinetic evaluation of the size-dependent decomposition performance of solvent-free microcellular polylactic acid foams. Chin Sci Bull. 2012;57(1):83–9.

    Article  CAS  Google Scholar 

  28. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules. 2011;12(5):1762–71.

    Article  CAS  Google Scholar 

  29. Nofar M, Zhu WL, Park CB, Randall J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res. 2011;50(24):13789–98.

    Article  CAS  Google Scholar 

  30. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J Appl Polym Sci. 2006;100(4):3145–51.

    Article  Google Scholar 

  31. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of Poly(L-lactide): molecular weight dependence. Macromolecules. 2007;40(19):6898–905.

    Article  CAS  Google Scholar 

  32. Dobreva T, Pereña JM, Pérez E, Benavente R, García M. Crystallization behavior of poly(L-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym Compos. 2010;31(6):974–84.

    Article  CAS  Google Scholar 

  33. Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S. Spherulite growth of L-lactide copolymers: effects of tacticity and comonomers. Polymer. 2005;46(13):4917–27.

    Article  CAS  Google Scholar 

  34. Donghee K, Yoshito A, Yoshihito S, Haruo N. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization. ACS Appl Mater Interfaces. 2011;3(2):385–91.

    Article  Google Scholar 

  35. Wasanasuk K, Tashiro K. Crystal structure and disorder in poly(L-lactic acid) delta form (alpha’ form) and the phase transition mechanism to the ordered alpha form. Polymer. 2011;52(26):6097–109.

    Article  CAS  Google Scholar 

  36. Delpouve N, Arnoult M, Saiter A, Dargent W, Saiter JM. Evidence of two mobile amorphous phases in semicrystalline polylactide observed from calorimetric investigations. Polym Eng Sci. 2014;54(5):1144–50.

    Article  CAS  Google Scholar 

  37. Song YN, Tashiro K, Xu DG, Liu J, Bin YZ. Crystallization behavior of poly(lactic acid)/microfibrillated cellulose composite. Polymer. 2013;54(13):3417–25.

    Article  CAS  Google Scholar 

  38. Park SH, Lee SG, Kim SH. Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos Part A. 2013;46:11–8.

    Article  CAS  Google Scholar 

  39. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  40. Cai J, Liu M, Wang L, Yao KH, Li S, Xiong HG. Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym. 2011;86(2):941–7.

    Article  CAS  Google Scholar 

  41. Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)-crystallization and mechanical property effects. Compos Sci Technol. 2010;70(5):815–21.

    Article  CAS  Google Scholar 

  42. Li Y, Chen C, Li J, Sun XS. Isothermal crystallization and melting behaviors of bionanocomposites from poly(lactic acid) and TiO2 nanowires. J Appl Polym Sci. 2012;124(4):2968–77.

    Article  CAS  Google Scholar 

  43. Liao RG, Yang B, Yu W, Zhou CX. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci. 2007;104(1):310–7.

    Article  CAS  Google Scholar 

  44. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R. Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules. 2011;44(16):6496–502.

    Article  CAS  Google Scholar 

  45. Iannace S, Nicolais L. Isothermal crystallization and chain mobility of poly(L-lactide). J Appl Polym Sci. 1997;64(5):911–9.

    Article  CAS  Google Scholar 

  46. Kalkar AK, Deshpande VD, Kulkarni MJ. Isothermal crystallization kinetics of poly(phenylene sulfide)/TLCP composites. Polym Eng Sci. 2009;49(2):397–417.

    Article  CAS  Google Scholar 

  47. Wunderlich B. Macromolecular physics. NewYork: Academic; 1976.

    Google Scholar 

  48. Wunderlich B. Macromolecular Physics, vol. 3. New York: Academic; 1980.

    Google Scholar 

  49. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci, Part B: Polym Phys. 2004;42(1):25–32.

    Article  CAS  Google Scholar 

  50. Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules. 2005;38(19):8012–21.

    Article  CAS  Google Scholar 

  51. Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(L-lacticacid): X-ray and DSC analyses of the melting process. Polymer. 2008;49(7):1943–51.

    Article  CAS  Google Scholar 

  52. Yasuniwa M, Tsubakihara S, Fujioka T. X-ray and DSC studies on the melt-recrystallization process of poly(butylene naphthalate). Thermochim Acta. 2003;396(1–2):75–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11274176 and 11474166), the Analysis Method and Technology Guide Project of Science and Technology Department of Jiangsu Province (JKYB2014018) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (JSYSXK2014), as well as the Nanjing Laboratory Platform Foundation (1640703064). Xiao Hu also thanks Rowan University Start-up Grants, Rowan University 2013–2014 Seed Funding Program (10110-60930-7460-12) for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, SJ., Wang, F., Ma, QY. et al. Impact of foaming air on melting and crystallization behaviors of microporous PLA scaffolds. J Therm Anal Calorim 122, 1077–1088 (2015). https://doi.org/10.1007/s10973-015-4770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4770-2

Keywords

Navigation