Skip to main content
Log in

Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The isothermal pyrolysis characteristics of lump coal used in COREX was studied by the self-developed thermos-gravimetry analysis device varying the temperature from 900 to 1200 °C. The results indicated that pyrolysis temperature had a significant influence on the pyrolysis rate of the lump coal, but have a little influence on the weight loss ratio. The results obtained by nonlinear fitting of mechanism functions indicated that the pyrolysis process of lump coal satisfied the two-dimensional random nucleation and nuclei growth model. The pyrolysis kinetics equation is \( \frac{{{\text{d}}\alpha }}{{{\text{d}}t}} = - 1.03082\,\exp ( - \frac{46630}{8.314T})[(1 - \alpha )( - \ln (1 - \alpha ))^{0.5} ] \), and the pyrolysis activation energy is 46.63 kJ mol−1. In addition, the average activation energy calculated by iso-conversional method is 47.06 kJ mol−1, which proves that the kinetics equation determined by the master curve method is reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Prachethan Kumar P, Rao YS, Chidambaran K, et al. Influence of coal size on the performance of Corex process. World Iron Steel. 2010;04:13–7.

    Google Scholar 

  2. Xu W, Guo Y, Wang C. Analysis of the factors affecting the fuel rate in the COREX process and improvement measures. Baosteel Technol Res. 2011;5(1):45–50.

    CAS  Google Scholar 

  3. Liu X, Pan G, Wang G, Wen Z. Mathematical model of lump coal falling in the freeboard zone of the COREX melter gasifier. Energy Fuel. 2011;25:5729–35.

    Article  CAS  Google Scholar 

  4. Gupta SK. Corex process utilisation of noncoking coal from India: prospects and problems. J Mines Metals Fuels. 2002;50(3):300–5.

    CAS  Google Scholar 

  5. Kim B, Gupta S, Lee S, et al. Devolatilization and cracking characteristics of australian lumpy coals. Energy Fuels. 2008;22(1):514–22.

    Article  CAS  Google Scholar 

  6. Minkina M, Oliveira FLG, Zymla V. Coal lump devolatilization and the resulting char structure and properties. Fuel Process Technol. 2010;91(5):476–85.

    Article  CAS  Google Scholar 

  7. Campbell QP, Bunt JR, de Waal F. Investigation of lump coal agglomeration in a non-pressurized reactor. J Anal Appl Pyrol. 2010;89(2):271–7.

    Article  CAS  Google Scholar 

  8. Coetzee S, Neomagus HWJP, Bunt JR, et al. The transient swelling behaviour of large (−20 + 16 mm) South African coal particles during low-temperature devolatilisation. Fuel. 2014;136:79–88.

    Article  CAS  Google Scholar 

  9. Fu Z, Guo Z, Yuan Z, et al. Swelling and shrinkage behavior of raw and processed coals during pyrolysis. Fuel. 2007;86(3):418–25.

    Article  CAS  Google Scholar 

  10. Sahoo R, Roach D. Degradation behaviour of weathered coal during handling for the COREX process of iron making. Powder Technol. 2005;152(1–3):1–8.

    Article  CAS  Google Scholar 

  11. Sahoo R, Roach D. Quantification of the lump coal breakage during handling operation at the gladstone port. Chem Eng Process. 2005;44(7):797–804.

    Article  CAS  Google Scholar 

  12. Lu L. Coal char reactivity and structural evolution during combustion-factors influencing blast furnace pulverized coal injection operation. Fuel Energy Abstr. 2002;43(4):283.

    Article  Google Scholar 

  13. Lu L, Sahajwalla V, Harris D. Characteristics of chars prepared from various pulverized coals at different temperatures using Drop-tube furnace. Energy Fuels. 2000;14(4):869–76.

    Article  CAS  Google Scholar 

  14. Li K, Khanna R, Zhang J, et al. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: a review. Fuel. 2014;133:194–215.

    Article  CAS  Google Scholar 

  15. Yu J, Lucas JA, Wall TF. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: a review. Prog Energy Combust Sci. 2007;33(2):135–70.

    Article  CAS  Google Scholar 

  16. Cui X, Zhang X, Yang M, et al. Study on the structure and reactivity of COREX coal. J Therm Anal Calorim. 2013;113(2):693–701.

    Article  CAS  Google Scholar 

  17. Huo W, Zhou Z, Chen X, et al. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars. Bioresour Technol. 2014;159:143–9.

    Article  CAS  Google Scholar 

  18. Feng B, Bhatia SK, Barry JC. Structural ordering of coal char during heat treatment and its impact on reactivity. Carbon. 2002;40(4):481–96.

    Article  CAS  Google Scholar 

  19. Zhang S, Zhu F, Bai C, et al. High temperature pyrolysis behaviour and kinetics of lump coal in COREX melter gasifier. Ironmak Steelmak. 2014;41(3):219–28.

    Article  CAS  Google Scholar 

  20. Sekine Y, Ishikawa K, Kikuchi E, et al. Reactivity and structural change of coal char during steam gasification. Fuel. 2006;85:122–6.

    Article  CAS  Google Scholar 

  21. Wang G, Zhang J, Hou X, et al. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char. Bioresour Technol. 2015;177:66–73.

    Article  CAS  Google Scholar 

  22. Zhong S, Baitalow F, Nikrityuk P, et al. The effect of particle size on the strength parameters of German brown coal and its chars. Fuel. 2014;125:200–5.

    Article  CAS  Google Scholar 

  23. Zhang C, Jiang X, Wei L, et al. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal. Energy Convers Manag. 2007;48(3):797–802.

    Article  CAS  Google Scholar 

  24. Wang J, Du J, Chang L, et al. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel Process Technol. 2010;91(4):430–3.

    Article  CAS  Google Scholar 

  25. Gong X, Guo Z, Wang Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe. Energy Fuels. 2009;23(9):4547–52.

    Article  CAS  Google Scholar 

  26. Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta. 2003;406(1–2):1–7.

    Article  CAS  Google Scholar 

  27. Zou S, Wu Y, Wu M, et al. Characteristics and dynamics of pyrolysis process microalgae. J Combust Sci Technol. 2007;04:330–4.

    Google Scholar 

  28. Ren S, Zhang J. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochim Acta. 2013;561:36–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support for this work provided by national basic research Program of China (973 Program) (No. 2012CB720401) and national key technology R&D Program of China (No. 2011BAC01B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runsheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Zhang, J., Wang, G. et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim 123, 773–783 (2016). https://doi.org/10.1007/s10973-015-4972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4972-7

Keywords

Navigation