Skip to main content
Log in

Characteristics of linear/branched polyethylene reactor blends synthesized by metallocene/late transitional metal hybrid catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nickel diimine late transition metal (LTM) and Cp2TiCl2 metallocene catalysts were supported on the TIBA-modified MgCl2·nEtOH adduct, separately and concurrently, at different ratios, to yield hybrid catalysts, where the catalytic precursors were activated in the ethylene polymerization with TEA as the cocatalyst. Polymerization activities revealed that supported LTM catalysts show very high levels of activity, in an adverse trend with polymerization temperature ranging from 30 to 70 °C, in opposition to the activity of metallocene component. Consequently, the proportion of corresponding polymer fractions were tuned by changing reaction temperature as well as catalyst composition. Study of thermal properties confirmed that LTM component is responsible for production of less crystallizable branched chains, while metallocene fraction makes highly crystallizable linear chains. All samples showed noticeable thermorheological complexity due to coexistence of linear and branched microstructures. Interestingly, it was found that increase in metallocene fraction of the hybrid catalyst stalls the terminal relaxation of the produced polymers and increases the entanglement density by decreasing the extent of branching. Study of dynamic mechanical properties revealed that the intensity of β transition could be correlated with the branching level and catalyst composition accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Münstedt H, Kaminsky W. Structure-property relationships of linear and long-chain branched metallocene high-density polyethylenes characterized by shear rheology and SEC-MALLS. Macromol Chem Phys. 2006;207:26–38.

    Article  CAS  Google Scholar 

  2. Zahedi M, Ahmadi M, Nekoomanesh M. Influence of molecular mass distribution on flow properties of commercial polyolefins. J App Polym Sci. 2008;108:3565–71.

    Article  CAS  Google Scholar 

  3. Zahedi M, Ahmadi M, Nekoomanesh M. Influence of microstructure and morphology on stress–strain behavior of commercial high density polyethylene. J App Polym Sci. 2008;110:624–31.

    Article  CAS  Google Scholar 

  4. Wasilke JC, Obrey SJ, Baker RT, Bazan GCJ. Concurrent tandem catalysis. Chem Rev. 2005;105:1001–20.

    Article  CAS  Google Scholar 

  5. Pinheiro AC, Casagrande ACA, Casagrande OL Jr. Linear low-density polyethylene nanocomposites by in situ polymerization using a zirconium–nickel tandem catalyst system. J Poly Sci Part A Polym Chem. 2014;52:3506–12.

    CAS  Google Scholar 

  6. Robert C, Thomas CM. Tandem catalysis: a new approach to polymers. J Chem Soc Rev. 2013;42:9392–402.

    Article  CAS  Google Scholar 

  7. Khorasani M, Saeb M, Mohammadi Y, Ahmadi M. The evolutionary development of chain microstructure during tandem polymerization of ethylene: a Monte Carlo simulation study. Chem Eng Sci. 2014;111:211–9.

    Article  CAS  Google Scholar 

  8. Damavandi S, Samadieh N, Ahmadjo S, Etemadinia Z, Zohuri GH. Novel Ni-based FI catalyst for ethylene polymerization. Eur Polym J. 2015;64:118–25.

    Article  CAS  Google Scholar 

  9. Stadler FJ, Arikan-Conley B, Kaschta J, Kaminsky W, Münstedt H. Synthesis and characterization of novel ethylene-graft-ethylene/propylene copolymers. Macromolecules. 2011;44:5053–63.

    Article  CAS  Google Scholar 

  10. Arriola DJ, Carnahan EM, Hustad PD, Kuhlman RL, Wenzel TT. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science. 2006;312:714–9.

    Article  CAS  Google Scholar 

  11. Mohammadi Y, Ahmadi M, Saeb MR, Khorasani MM, Yang P, Stadler FJ. A detailed model on kinetics and microstructure evolution during copolymerization of ethylene and 1-octene: from coordinative chain transfer to chain shuttling polymerization. Macromolecules. 2014;47:4778–89.

    Article  CAS  Google Scholar 

  12. Ahmadjo S, Arabi H, Nekoomanesh M, Zohuri GH, Mortazavi MM, Naderi G. Terpolymerization of ethylene/propylene/diene monomers using (2-PhInd)2ZrCl2 metallocene catalysts. Macromol React Eng. 2010;4:707–14.

  13. Ahmadi M, Saeb MR, Mohammadi Y, Khorasani MM, Stadler FJ. A perspective on modeling and characterization of transformations in the blocky nature of olefin block copolymers. Ind Eng Chem Res. 2015;. doi:10.1021/acs.iecr.5b01180.

    Google Scholar 

  14. Saeb MR, Khorasani MM, Ahmadi M, Mohammadi Y, Stadler FJ. A unified picture of hard–soft segmental development along olefin chain shuttling copolymerization. Polymer. 2015;. doi:10.1016/j.polymer.2015.08.059.

    Google Scholar 

  15. Ahmadi M, Nasresfahani A. Realistic representation of kinetics and microstructure development during chain shuttling polymerization of Olefin block copolymers. Macromol Theory Simul. 2015;24:311–21.

    Article  CAS  Google Scholar 

  16. Sedov IV, Matkovskiy PE. Mixed and hybrid multisite catalysts for ethylene polymerization. J Rus Chem Rev. 2012;81:239–57.

    Article  CAS  Google Scholar 

  17. Kissin YV. Multicenter nature of titanium-based Ziegler–Natta catalysts: comparison of ethylene and propylene polymerization reactions. J Polym Sci Part A Polym Chem. 2003;41:1745–58.

    Article  CAS  Google Scholar 

  18. Spaleck W, Kuber F, Winter A, Rohrmann J, Bachmann B, Antberg M, Dolle V, Paulus EF. The influence of aromatic substituents on the polymerization behavior of bridged zirconocene catalysts. Organometall. 1994;13:954–63.

    Article  CAS  Google Scholar 

  19. Ahmadi M, Jamjah R, Nekoomanesh M, Zohuri GH, Arabi H. Ziegler-Natta/metallocene hybrid catalyst for ethylene polymerization. Macromol React Eng. 2007;1:604–10.

  20. Donga C, Niua H, Donga JY. catalysis of broad/bimodal molecular-mass-distribution polypropylene by a combination of Ziegler–Natta and metallocene catalysts. Appl Catal A General. 2014;484:142–7.

    Article  Google Scholar 

  21. Paredes B, Grieken RV, Carrero A, Moreno J, Moral A. Chromium oxide/metallocene binary catalysts for bimodal polyethylene: hydrogen effects. J Chem Eng. 2012;213:62–9.

  22. Yamamoto K, Ishihama Y, Sakata K. Preparation of bimodal HDPEs with metallocene on Cr-montmorillonite support. J Polym Sci, Part A: Polym Chem. 2010;48:3722–8.

    Article  CAS  Google Scholar 

  23. Moreno J, Grieken RV, Carrero A, Paredes B. Development of novel chromium oxide/metallocene hybrid catalysts for bimodal polyethylene. Polymer. 2011;52:1891–9.

    Article  CAS  Google Scholar 

  24. de Souza RF, Casagrande OL Jr. Recent advances in olefin polymerization using binary catalyst systems. Macromol Rapid Commun. 2001;22:1293–301.

    Article  Google Scholar 

  25. Kim JD, Soares JBP. Copolymerization of ethylene and α-olefins with combined metallocene catalysts. III. Production of polyolefins with controlled microstructures. J Polym Sci, Part A: Polym Chem. 2000;38:1427–32.

    Article  CAS  Google Scholar 

  26. Hong SC, Mihan SH, Lilge D, Delux L, Rief U. Immobilized Me2Si(C5Me4)(N-tBu)TiCl2/(nBuCp)2ZrCl2 Hybrid metallocene catalyst system for the production of poly(ethylene-co-hexene) with pseudo-bimodal molecular weight and inverse comonomer distribution. Polym Eng Sci. 2007;47:131–9.

    Article  CAS  Google Scholar 

  27. Schilling M, Bal R, Gorl CH, Alt HG. Heterogeneous catalyst mixtures for the polymerization of ethylene. Polymer. 2007;48:7461–75.

    Article  CAS  Google Scholar 

  28. Johnson LK, Killian CM, Brookhart M. New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and alpha-olefins. J Am Chem Soc. 1995;117:6414–5.

    Article  CAS  Google Scholar 

  29. Small BL, Brookhart M, Bennett AMA. Highly active iron and cobalt catalysts for the polymerization of ethylene. J Am Chem Soc. 1998;120:4049–50.

    Article  CAS  Google Scholar 

  30. Kurek A, Mark S, Enders M, Kristen MO, Mülhaupt R. Mesoporous silica supported multiple single- site catalysts and polyethylene reactor blends with tailor-made trimodal and ultra-broad molecular weight distributions. Macromol Rapid Commun. 2010;31:1359–63.

    Article  CAS  Google Scholar 

  31. Kurek A, Mark S, Enders M, Stürzel M, Mülhaupt R. Two-site silica supported Fe/Cr catalysts for tailoring bimodal polyethylenes with variable content of UHMWPE. J Mol Catal A: Chem. 2014;383–384:53–7.

    Article  Google Scholar 

  32. Stürzel M, Thomann Y, Enders M, Mülhaupt R. Graphene-supported dual-site catalysts for preparing self-reinforcing polyethylene reactor blends containing UHMWPE nanoplatelets and in situ UHMWPE shish-kebab nanofibers. Macromolecules. 2014;47:4979–86.

    Article  Google Scholar 

  33. Ahmadjo S, Dehghani S, Zohuri GH, Nejabat GR, Jafarian H, Ahmadi M, Mortazavi SMM. Thermal behavior of polyethylene reactor alloys polymerized by Ziegler–Natta/Late transition metal hybrid catalyst. Macromol React Eng. 2015;9:6–18.

    Article  Google Scholar 

  34. Mota FF, Mauler RS, Souza RF, Casagrande OL Jr. Production of LPE/BPE blends using homogeneous binary catalyst system: influence of the polymerization parameters on polymer properties. Polymer. 2003;44:4127–33.

    Article  CAS  Google Scholar 

  35. Junges F, de Souza RF, Dos Santos JHZ, Casagrande OL Jr. Ethylene polymerization using combined Ni and Ti catalysts supported in situ on MAO-modified silica. Macromol Mater Eng. 2005;290:72–7.

    Article  CAS  Google Scholar 

  36. Huang R, Koning CE, Chadwick JC. Synergetic effect of a nickel diimine in ethylene polymerization with immobilized Fe- Cr- and Ti-based catalysts on MgCl2 supports. Macromolecules. 2007;40:3021–9.

    Article  CAS  Google Scholar 

  37. Li W, Wang J, Jiang B, Yanga Y, Jie Z. Ethylene polymerization with hybrid nickel diimine/Cp2TiCl2 catalyst: a new method to prepare blends of linear and branched polyethylene. Polym Int. 2010;59:617–23.

    Article  CAS  Google Scholar 

  38. Stephens CH, Hiltner A, Baer E. Phase behavior of partially miscible blends of linear and branched polyethylenes. Macromolecules. 2003;36:2733–41.

    Article  CAS  Google Scholar 

  39. Arabi H, Ghafari M, Zohuri GH, Damavandi S, Ahmadjo S. Polymerization of ethylene using α-diimine nickel catalyst. Iran J Polym Sci Tech. 2013;26:327–35.

    Google Scholar 

  40. Jamjah R, Zohuri GH, Vaezi J, Ahmadjo S, Nekoomanesh M, Pouryari M. Morphological study of spherical MgCl2·nEtOH supported TiCl4 Ziegler–Natta catalyst for polymerization of ethylene. J Appl Polym Sci. 2006;101:3829–34.

    Article  CAS  Google Scholar 

  41. Ahmadjo S, Arabi H, Zohuri GH, Nekoomanesh MM, Nejabat GH, Mortazavi MM. Preparation of ethylene/α-olefins copolymers using (2-RInd)2ZrCl2/MCM-(R:Ph, H) catalyst, microstructural study. J Therm Anal Calorim. 2014;116:417–26.

    Article  CAS  Google Scholar 

  42. Severn JR, Chadwick JC, Castelli VVA. MgCl2-based supports for the immobilization and activation of nickel diimine catalysts for polymerization of ethylene. Macromolecules. 2004;37:6258–9.

    Article  CAS  Google Scholar 

  43. Gates DP, Svejda SA, Onate E, Killian CM, Johnson LK, White PS, Brookhart M. Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts: influence of temperature, ethylene pressure, and ligand structure on polymer poperties. Macromolecules. 2000;33:2320–34.

    Article  CAS  Google Scholar 

  44. Ahmadi M, Nekoomanesh M, Jamjah R, Zohuri GH, Arabi H. Modeling of slurry polymerization of ethylene using soluble Cp2ZrCl2/MAO catalytic system. Maromol Theory Simul. 2007;16:557–65.

    Article  CAS  Google Scholar 

  45. Ahmadi M, Bailly C, Keunings R, Nekoomanesh M, Arabi H, van Ruymbeke E. Time marching algorithm for predicting the linear rheology of monodisperse comb polymer melts. Macromolecules. 2001;44:647–59.

    Article  Google Scholar 

  46. Trinkle S, Friedrich C. Van Gurp–Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta. 2001;40:322–8.

    Article  CAS  Google Scholar 

  47. Kessner U, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag S, Munstedt H. Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules. 2010;43:7341–50.

    Article  CAS  Google Scholar 

  48. Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF. Dynamic mechanical relaxations in polyethylene. Macromolecules. 1985;18:1302–9.

    Article  CAS  Google Scholar 

  49. Ruff M, Lang RW, Paulik C. Controlling polyolefin properties by in-reactor blending, 3. Mechanical properties. Macromol React Eng. 2013;7:328–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ahmadjo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi, S.M.M., Jafarian, H., Ahmadi, M. et al. Characteristics of linear/branched polyethylene reactor blends synthesized by metallocene/late transitional metal hybrid catalysts. J Therm Anal Calorim 123, 1469–1478 (2016). https://doi.org/10.1007/s10973-015-5072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5072-4

Keywords

Navigation