Skip to main content
Log in

Physicochemical characterization and kinetic study of pine needle for pyrolysis process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study concerns physicochemical characterization and pyrolysis kinetics of pine needle. The physiochemical properties of pine needle were analyzed to examine the potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, lignocellulosic composition, heating values and FTIR spectroscopy of pine needle were investigated. The pyrolysis experiments were conducted in a non-isothermal thermogravimetric analyzer (TG) under an inert atmosphere and operated at different heating rates (5, 10 and 20 °C min−1) to understand the thermal degradation behavior. The kinetic parameters such as activation energy, pre-exponential factor and reaction order were evaluated by using iso-conversional methods proposed by Kissinger–Akahira–Sunose (KAS), Ozawa–Flynn–Wall (OFW) and Coats–Redfern using TG data. The average activation energy of pine needle derived from KAS and OFW models is found to be 70.97 and 79.13 kJ mol−1, respectively. The degree of conversion of pine needles on heat treatment by using the kinetic parameters of the proposed model is found to be in good agreement with experimental data. Maximum error limit between experimental data and proposed model data is 9.8, 6.8 and 10.6 % for 5, 10 and 20 °C min−1, respectively. Analysis of the results proves the suitability of pine needle as a potential feedstock for pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackalın K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  Google Scholar 

  2. McKendry P. Energy production from biomass (Part 1): overview of biomass. Biores Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  3. Zhu X, Chen Z, Xiao B, et al. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim. 2014;119:2269–79.

    Article  Google Scholar 

  4. Wang Z, Cao J, Wang J. Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. J Anal Appl Pyrolysis. 2009;84:179–84.

    Article  CAS  Google Scholar 

  5. Alwani MS, Khalid HPSA, Sulaiman O, Islam MN, Dungani R. An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources. 2014;9:218–30.

    CAS  Google Scholar 

  6. Braga RM, Costa TR, Freitas JC, et al. Pyrolysis kinetics of elephant grass pretreated biomasses. J Therm Anal Calorim. 2014;117:1341–8.

    Article  CAS  Google Scholar 

  7. Santos NAV, Magriotis ZM, Saczk AA, Fássio A, Vieira SS. Kinetic study of pyrolysis of castor beans (Ricinuscommunis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy Fuels. 2015;29:2351–7.

    Article  CAS  Google Scholar 

  8. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Biores Technol. 2014;156:182–8.

    Article  CAS  Google Scholar 

  9. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;2015(119):651–7.

    Article  Google Scholar 

  10. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  11. Islam MA, Asif M, Hameed BH. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Biores Technol. 2015;179:227–33.

    Article  CAS  Google Scholar 

  12. Guerrero MRB, da Silva Marques, Paula M, Zaragoza MM, et al. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int J Hydrogen Energy. 2014;39(29):16619–27.

    Article  CAS  Google Scholar 

  13. Bisht AS, Singh S, Kumar SR. Use of pine needle in energy generation application. Int J Res Appl Sci Eng Technol. 2014;2:59–63.

    Google Scholar 

  14. http://www.ureda.uk.gov.in/pages/display/142-pine-needle-based-project.

  15. Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.

    Article  CAS  Google Scholar 

  16. Chutia RS, Kataki R, Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Biores Technol. 2013;139:66–72.

    Article  CAS  Google Scholar 

  17. Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw. Biores Technol. 2014;169:614–21.

    Article  CAS  Google Scholar 

  18. Torquato LM, Braz CE, Ribeiro CA, Capela JM, Crespi MS. Kinetic study of the co-firing of bagasse–sludge blends. J Therm Anal Calorim. 2015;121:499–507.

    Article  CAS  Google Scholar 

  19. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85:1201–11.

    Article  CAS  Google Scholar 

  20. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2001;81:1051–63.

    Article  Google Scholar 

  21. Basu P. Biomass gasification and pyrolysis: practical design and theory. UK: Associated Press for Elsevier Inc.; 2010.

    Google Scholar 

  22. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Biores Technol. 2009;100:4026–31.

    Article  CAS  Google Scholar 

  23. Niu Y, Tan H, Liu Y, Wang X, Xu T. The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass. Energy Sources Part A Recov Util Environ Eff. 2013;35:1663–9.

    Article  CAS  Google Scholar 

  24. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Biores Technol. 2011;102:6230–8.

    Article  CAS  Google Scholar 

  25. Asadullah M, Rahman MA, Ali MM, Rahman MS, Motin MA, Sultan MB, Alam MR. Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel. 2007;86:2514–20.

    Article  CAS  Google Scholar 

  26. Graboski M, Bain R. Biomass gasification: principles and technology. In: Reed TB, editor. Noyes Data Corporation, New Jersey, USA, 1981. pp. 154–82.

  27. El-Sayed SA, Mostafa ME. Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag. 2014;85:165–72.

    Article  Google Scholar 

  28. Shadangi KP, Mohanty K. Kinetic study and thermal analysis of the pyrolysis of non-edible oilseed powders by thermogravimetric and differential scanning calorimetric analysis. Renew Energy. 2014;63:337–44.

    Article  CAS  Google Scholar 

  29. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: critical review. Energy Fuels. 2006;20:848–89.

    Article  CAS  Google Scholar 

  30. Boateng AA, Daugaard DE, Goldberg NM, Hicks KB. Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Ind Eng Chem Res. 2007;46:1891–7.

    Article  CAS  Google Scholar 

  31. Nyakuma BB, Johari A, Ahmad A, Amran T, Abdullah T. Thermogravimetric analysis of the fuel properties of empty fruit bunch briquettes. Jurnal Teknologi. 2014;3:79–82.

    Google Scholar 

  32. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Biores Technol. 2012;118:382–9.

    Article  CAS  Google Scholar 

  33. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis. 2013;99:170–7.

    Article  CAS  Google Scholar 

  34. Bilba K, Ouensanga A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrolysis. 1996;38(1–2):61–73.

    Article  CAS  Google Scholar 

  35. Asadieraghi M, Wan Daud WMA. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag. 2014;82:71–82.

    Article  CAS  Google Scholar 

  36. Ghose MK, Ghose UK. Utilization of pine needles as bed material in solid state fermentation for production of lactic acid by lactobacillus strains. BioResources. 2011;6:1556–75.

    Google Scholar 

  37. Aburto J, Moran M, Galano A, Torres-García E. Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J Anal Appl Pyrolysis. 2015;112:94–104.

    Article  CAS  Google Scholar 

  38. Gai C, Dong Y, Zhang T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Biores Technol. 2013;127:298–305.

    Article  CAS  Google Scholar 

  39. Fan YS, Li XH, Cai YX, Zhao WD, Yin HY. Thermo-gravimetric analysis and kinetic study of biomass pyrolysis. Adv Mater Res. 2013;800:509–16.

    Article  Google Scholar 

  40. Gai C, Zhan Y, Chen WT, Zhang P, Dong Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Biores Technol. 2013;150:139–48.

    Article  CAS  Google Scholar 

  41. Cepeliogullar O, Putun AE. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Energy Convers Manag. 2013;75:263–70.

    Article  CAS  Google Scholar 

  42. Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JF. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81–9.

    Article  CAS  Google Scholar 

  43. Sharma A, Rajeswara Rao T. Kinetics of pyrolysis of rice husk. Biores Technol. 1999;67:53–9.

    Article  CAS  Google Scholar 

  44. Dorge S, Jeguirim M, Trouvé G. Thermal degradation of Miscanthus pellets: kinetics and aerosols characterization. Waste Biomass Valoriz. 2011;2:149–55.

    Article  CAS  Google Scholar 

  45. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Biores Technol. 2009;100:1413–8.

    Article  CAS  Google Scholar 

  46. Zhang X, Xu M, Sun R, Sun L. Study on biomass pyrolysis kinetics. J Eng Gas Turbines Power. 2006;128:493–6.

    Article  CAS  Google Scholar 

  47. Simkovic I, Csomorova K. Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact. J Appl Polym Sci. 2006;100:1318–22.

    Article  CAS  Google Scholar 

  48. Nassar MM, Ashour EA, Wahid SS. Thermal characteristics of bagasse. J Appl Polym Sci. 1996;61:885–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A.K., Mondal, P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim 124, 487–497 (2016). https://doi.org/10.1007/s10973-015-5126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5126-7

Keywords

Navigation