Skip to main content
Log in

Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3·H2O)

Implications for thermal stability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Colemanite CaB3O4(OH)3·H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. We have studied the thermal decomposition of colemanite by using a combination of thermal analysis (TG/DTG) and infrared emission spectroscopy (IES). Thermogravimetric analysis of the colemanite mineral was obtained by using TA Instruments Inc. Q50 high-resolution TGA operating at a 10 °C min−1 ramp with data sample interval of 0.50 s pt−1 from room temperature to 1000 °C in a high-purity flowing nitrogen atmosphere (100 cm3 min−1). Thermogravimetric analysis shows a sharp mass loss at 400.9 °C. Only a single mass loss is observed. IES shows a sharp band at 3610 cm−1 assigned to the stretching vibration of hydroxyl units. Intensity in this band is lost by 350 °C. A broad spectral feature is observed at 3274 cm−1 attributed to water stretching vibrations. Intensity in this band is lost by 300 °C. A combination of thermogravimetry and IES is used to study the thermal stability of the borate mineral colemanite. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron-containing minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alkan M, Dogan M. Dissolution kinetics of colemanite in oxalic acid solutions. Chem Eng Process. 2004;43:867–72.

    Article  CAS  Google Scholar 

  2. Back ME, Mandarino JA. Fleischer`s glossary of mineral species. Mineralogical Record. 2008.

  3. Gündüz G, Usanmaz A. Development of new nuclear shielding materials containing vitrified colemanite and impregnated polymer. J Nucl Mater. 1986;140:44–55.

    Article  Google Scholar 

  4. Demir F, Budak G, Sahin R, Karabulut A, Oltulu M, Un A. Determination of radiation attenuation coefficients of heavyweight- and normal-weight concretes containing colemanite and barite for 0.663 mev γ-rays. Ann Nucl Energy. 2011;38:1274–8.

    Article  CAS  Google Scholar 

  5. Targan S, Olgun A, Erdogan Y, Sevinc V. Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem Concr Res. 2003;33:1175–82.

    Article  CAS  Google Scholar 

  6. Altar N, Olgun A. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste. J Hazard Mater. 2007;146:171–9.

    Article  Google Scholar 

  7. Burns PC, Hawhorne FC. Hydrogen bonding in colemanite: an X-ray and structure-energy study. Can Mineral. 1993;31:297–304.

    CAS  Google Scholar 

  8. Waclawska I, Stoch L, Paulik J, Paulik F. Thermal decomposition of colemanite. Thermochim Acta. 1988;126:307–18. doi:10.1016/0040-6031(88)87276-9.

    Article  CAS  Google Scholar 

  9. Stamatakis MG, Economou G. A colemanite and ulexite occurrence from late miocene karlovassi basin, samos island, greece. Econ Geol. 1991;86:187–94.

    Article  Google Scholar 

  10. Hanks GH. Report on the borax deposits of california and nevada. California state mining bureau, part 21833.

  11. Helvaci C, Alonso RN. Borate deposits of turkey and Argentina: a summary and geological comparison. Turk J Earth Sci. 2000;9:1–27.

    CAS  Google Scholar 

  12. Grice JD, Gault RA, Velthuizen JV. Borate minerals of the Penobsquis and Millstream deposits, southern New Brunswick, Canada. Can Miner. 2005;43:1469–87.

    Article  CAS  Google Scholar 

  13. Allen RD. Differential thermal analysis of selected borate minerals. US Geol Surv Bull. 1957;1036-K:193–208.

    Google Scholar 

  14. Farmer JB, Gilbert AJD, Haines PJ. Thermal analysis of borate minerals. In: Thermal analysis, proceedings of international conferences. 7th ed., vol 1, 1982. p. 650–6.

  15. Tkachev KV, Leont’eva IA. Thermal analysis of inorganic borates. Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija. 1989;1:30–2.

    Google Scholar 

  16. Waclawska I. Thermal behavior of mechanically amorphized colemanite. I. Thermal decomposition of ground colemanite. J Therm Anal. 1997;48(1):145–54. doi:10.1007/bf01978974.

    Article  CAS  Google Scholar 

  17. Focke WW, Strydom CA, Bartie N. Thermal analysis of commercial inorganic flame retardants. S Afr J Chem Eng. 1997;9(2):41–51.

    CAS  Google Scholar 

  18. Frost RL, Bahfenne S, Graham J. Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron—implications for the geosequestration of greenhouse gases. Spectrochim Acta Part A Mol Biomol Spectrosc. 2009;71A(4):1610–6.

    Google Scholar 

  19. Kloprogge JT, Frost RL. Infrared emission spectroscopy of clay minerals. CMS Workshop Lect. 2005;13:99–124.

    CAS  Google Scholar 

  20. Kloprogge JT, Frost RL. Infrared emission spectroscopic study of the dehydroxylation of some natural and synthetic saponites. Neues Jahrbuch fuer Mineralogie, Monatshefte. 2001;10:446–63.

    Google Scholar 

  21. Kloprogge JT, Frost RL, Hickey L. Infrared emission spectroscopic study of the dehydroxylation of some hectorites. Thermochim Acta. 2000;345(2):145–56.

    Article  CAS  Google Scholar 

  22. Frost RL, Kloprogge JT. Infrared emission spectroscopic study of brucite. Spectrochim Acta Part A Mol Biomol Spectrosc. 1999;55A(11):2195–205.

    Article  CAS  Google Scholar 

  23. Frost RL, Vassallo AM. The dehydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays Clay Miner. 1996;44(5):635–51.

    Article  CAS  Google Scholar 

  24. Bednarczyk K, Kowol K. Dta of colemanite as an example of analysis of a substance which gives off dust when heated. Prz Geol. 1971;19(11):493–5.

    CAS  Google Scholar 

  25. Bondars A. Phenomenon of the explosive dehydration of colemanite (ca[b3o4(oh)3]·H2o) as an indicator of its crystal chemistry features. Latvijas PSR Zinatnu Akademijas Vestis, Kimijas Serija. 1981;5:580–92.

    Google Scholar 

  26. Bozadzhiev L, Bozadzhiev P. Structural and phase changes in colemanite during heating. Godishnik na Visshiya Khimiko-Tekhnologichen Institut, Burgas. 1978;13(Pt. 1):183–8.

    Google Scholar 

  27. Akhmanova MV. The use of infrared (i.R.) spectra to study the structures of natural borates. Zhurnal Strukturnoi Khimii. 1962;3:28–34.

    CAS  Google Scholar 

  28. Brunel R, Vierne R. Infrared reflection spectra of single crystal and powdered minerals. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie. 1970;93(3):328–40.

    CAS  Google Scholar 

  29. Jun L, Shuping X, Shiyang G. Ft-ir and raman spectroscopic study of hydrated borates. Spectrochim Acta. 1995;51A:519–32.

    Article  CAS  Google Scholar 

  30. Meixner H, Moenke H. Infrared absorption spectrum of the boron mineral tertschite (400–5000 cm−1). Kali und Steinsalz. 1961;3:228–9.

    CAS  Google Scholar 

  31. Valyashko MG, Vlasova EV. Infrared absorption spectra of borates and boron-containing aqueous solutions. Jena Rev. 1969;14(1):3–11.

    CAS  Google Scholar 

Download references

Acknowledgements

The financial and infrastructure support of the Discipline of Nanotechnology and Molecular Science, Science and Engineering Faculty of the Queensland University of Technology, is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the instrumentation. The authors would like to acknowledge the Center of Microscopy at the Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for providing the equipment and technical support for experiments involving electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frost, R.L., Scholz, R., Ruan, X. et al. Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3·H2O). J Therm Anal Calorim 124, 131–135 (2016). https://doi.org/10.1007/s10973-015-5128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5128-5

Keywords

Navigation