Skip to main content
Log in

Thermal behavior of sodium alendronate

A kinetic study under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of sodium alendronate trihydrate under non-isothermal behavior was studied by thermogravimetry and evolved gas analysis. Three steps of thermodegradation were observed: water loss, with a DTG max at 130 °C, ammonia loss (DTG max at 260 °C) and a complex degradation and pyrolysis to sodium pyrophosphate. A deamination mechanism (second step) was suggested and supported by the evolved gas analysis and the determined thermal effect. An elaborated kinetic study using four data processing methods (FR, FWO, KAS and NPK) confirms that the dehydration is a multistep process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen B, et al. Zoledronic acid enhances bone-implant osseointegration more than alendronate and strontium ranelate in ovariectomized rats. Osteoporos Int. 2013;24:2115–21.

    Article  CAS  Google Scholar 

  2. Chen BL, et al. Comparison of the effects of alendronate sodium and calcitonin on bone–prosthesis osseointegration in osteoporotic rats. Osteoporos Int. 2011;22(1):265–70.

    Article  CAS  Google Scholar 

  3. Atyol UK, et al. The influence of low-level laser therapy with alendronate irrigation on healing of bone defects in rats. Lasers Med Sci. 2015;30:1141–6.

    Article  Google Scholar 

  4. Fleisch H. Bisphosphonates in bone disease: from the laboratory to the patient. New York: The Parthenon Publishing Group Inc.; 1995.

    Google Scholar 

  5. Casolaro M, et al. Novel therapeutic agent for bone resorption. Part 1. Synthesis and protonation thermodynamics of poly(amido-amine)s containing bis-phosphonate residues. Biomacromolecules. 2006;7:3417.

    Article  CAS  Google Scholar 

  6. Alanne AL, et al. Systematic study of the physicochemical properties of o homologous series of amino bisphosphonates. Molecules. 2012;17:10928.

    Article  CAS  Google Scholar 

  7. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  8. Ledeti I, Vlase G, Vlase T, Doca N, Bercean V, Fulias A. Thermal decomposition, kinetic study and evolved gas analysis of 1,3,5-triazine-2,4,6-triamine. J Therm Anal Calorim. 2014;118(2):1057–63.

    Article  CAS  Google Scholar 

  9. Fulias A, Vlase G, Vlase T, Onetiu D, Doca N, Ledeti I. Thermal degradation of B-group vitamins: B-1, B-2 and B-6. J Therm Anal Calorim. 2014;118(2):1033–8.

    Article  CAS  Google Scholar 

  10. Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under non-isothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105(2):685–9.

    Article  CAS  Google Scholar 

  11. Shkolnikova LM, Sotman SS, Afonin EG. Crystal and molecular structures of 2 complexones of the alkylidene-diphosphone family-Monohydrate of dimethylamino-methylidene-diphosphonic and alpha-oxy-gama-amino-propylidenediphosphonic acids. Kristallografiija. 1990;35:1442–9.

    CAS  Google Scholar 

  12. Ohanessian J, Avenel D, El Manouni D, Benramdane M. The molecular structure of 4-amino-1- hydroxyl-butylidene-1 bisphosphonic acid (AHBBPA); an uncommon anhydrous hydroxybisphosphonic acid. Phosphorus Sulfur Silicon Relat Elem. 1997;129:99–110.

    Article  CAS  Google Scholar 

  13. Coiro VM, Lamba D. Structure of 6-amino-1-hydroxy-hexylidenebis (phosphonic acid). Acta Cryst Sect C Cryst Struct Commun. 1989;45:446–8.

    Article  Google Scholar 

  14. Afonin EG, Aleksandrov GG. Piperazinium and piperidinium trihydrogen-1-hydroxyethane-1,1diphosphonates. Russ J Gen Chem. 2002;72:221–5.

    Article  CAS  Google Scholar 

  15. Lide DR. Handbook of chemistry and physics. 76th ed. New York, London, Tokyo, Boca Raton: CRC Press; 1996.

    Google Scholar 

  16. American Dental Association.: Dental management of patients receiving oral bisphosphonate therapy. 2008. http://e-mercy.com/images/specializedcare/osteoporosis/Dental-Management-of-Oral-Bisphosphonate.pdf.

  17. Jeffcoat MK. Safety of oral bisphosphonate: controlled study on alveolar bone. Int J Maxilophac Implants. 2006;21:349–53.

    Google Scholar 

  18. Bosco R, Iafisco M, Tampieri A, Jansen IA, Leeunwenburgh CG, van den Beucken II. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coating to decrease osteoclastic activity. Appl Surf Sci. 2015;328:516–24.

    Article  CAS  Google Scholar 

  19. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic plastic. J Polymer Sci. 1965;6C:183–95.

    Google Scholar 

  20. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  23. Akahira T., Sunose T. Trans. Joint Convention of Four Electrical Institutes, paper no. 246 (1969) Research Report, Chiba Institute of Technology. Sci Technol. 1971:16:22–31.

  24. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  25. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: The non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  26. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92:35–638.

    Article  Google Scholar 

  27. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fuliaş A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.

    Article  CAS  Google Scholar 

  28. Fuliaş A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Centr J. 2013;7(1):70.

    Article  Google Scholar 

  29. Fulias A, Vlase G, Grigorie C, Ledeţi I, Albu P, Bilanin M, Vlase T. Thermal behaviour studies of procaine and benzocaine. Part 1 Kinetic analysis of the active substances under non-isothermal conditions. J Therm Anal Calorim. 2013;113(1):265–70.

    Article  CAS  Google Scholar 

  30. Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    Article  CAS  Google Scholar 

  31. Patrutescu C, Vlase G, Turcus V, Ardelean D, Vlase T, Albu P. TG/DTG/DTA data used for determining the kinetic parameters of the thermal degradation process of an immunosuppressive agent: mycophenolate mofetil. J Therm Anal Calorim. 2015;121(3):983–8.

    Article  CAS  Google Scholar 

  32. Ledeti I, Fulias A, Vlase G, Vlase T, Doca N. Novel triazolic copper (II) complex: synthesis, thermal behaviour and kinetic study. Rev Roum Chim. 2013;58(4–5):441–50.

    CAS  Google Scholar 

  33. Wall ME, Berrar DP, Dubitzky W, Granzow M, “Singular value decomposition and principal component analysis” Practical approach to microarray data analysis, Kluwer-Norwel; 2003:19:91–109. LANL LA-UR-02.

  34. Śestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Vlase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albu, P., Doca, S.C., Anghel, A. et al. Thermal behavior of sodium alendronate. J Therm Anal Calorim 127, 571–576 (2017). https://doi.org/10.1007/s10973-016-5745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5745-7

Keywords

Navigation