Skip to main content
Log in

Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Flame retardant thermoplastic polyurethane (TPU) composites with low smoke release have been prepared by melt-blending TPU with commercially available carbon black (CB) and ammonium polyphosphate (APP). The experimental data from SDT indicated that an appropriate amount of CB and APP can decrease the amount of smoke production in the test with or without flame. The CCT results showed that CB and APP greatly decrease smoke production rate, total smoke release, and smoke factor of flame retardant TPU composites compared with that of pure TPU. Indeed, CB is considered as an effective smoke suppression agent and a good synergism with APP in flame retardant TPU composites, which can greatly improve the structure of char residue realized by TG and SEM results. The TG and DTG results showed that CB can decrease the initial decomposition temperature and improve the thermal stability at high temperature for flame retardant TPU composites. More interest, the TG-IR study indicates that the volatilized products are CO2, ammonia compound, acid anhydride, water, alkane compounds, and aromatic compounds according to the temperature of onset formation. This is a very meaningful result in fire safety materials fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carty P, Creighton JR, White S. TG and flammability studies on polymer blends containing acrylonitrile-butadiene-styrene and chlorinated poly(vinyl Chloride). J Therm Anal Calorim. 2001;63(3):679–87.

    Article  CAS  Google Scholar 

  2. Chen XL, Jiang YF, Jiao CM. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;66:114–21.

    Article  Google Scholar 

  3. Chen MJ, Chen CR, Tan Y, Huang JQ, Wang XL, Chen L, Wang YZ. Inherently flame-retardant flexible polyurethane foam with low content of phosphorus-containing cross-linking agent. Ind Eng Chem Res. 2014;53(3):1160–71.

    Article  CAS  Google Scholar 

  4. Formicola C, Fenzo AD, Zarrelli M, Giordano M, Antonucci V. Zinc-based compounds as smoke suppressant agents for an aerospace epoxy matrix. Polym Int. 2011;60(2):304–11.

    Article  CAS  Google Scholar 

  5. Liu Y, Liu MF, Xie DY, Wang Q. Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym-Plast Technol. 2008;47(3):330–4.

    Article  CAS  Google Scholar 

  6. Harashina H, Tajima Y, Itoh T. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly (oxymethylene). Polym Degrad Stabil. 2006;91(9):1996–2002.

    Article  CAS  Google Scholar 

  7. Allcorn EK, Natali M, Koo JH. Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites. Compos Part A Appl Sci Manuf. 2013;45:109–18.

    Article  CAS  Google Scholar 

  8. Xu Y, Chen M, Ning X, Chen XL, Sun ZD, Ma YH, Yu J, Zhang ZB, Bo XJ. Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. J Therm Anal Calorim. 2014;15(1):689–95.

    Article  Google Scholar 

  9. Jiang SH, Shi YQ, Qian XD, Zhou KQ, Xu HY, Lo SM, Gui Z, Hu Y. Synthesis of a novel phosphorus- and nitrogen-containing acrylate and its performance as an intumescent flame retardant for epoxy acrylate. Ind Eng Chem Res. 2013;52(49):17442–50.

    Article  CAS  Google Scholar 

  10. Bourbigot S, Samyn F, Turf T, Duquesne S. Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polym Degrad Stabil. 2010;95(3):320–6.

    Article  CAS  Google Scholar 

  11. Jiao CM, Zhao XL, Song WK, Chen XL. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120(2):1173–81.

    Article  CAS  Google Scholar 

  12. Laoutid F, Bonnaud L, Alxandre M, Lopez-Cuesta JM, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng, R. 2009;63(3):100–5.

    Article  Google Scholar 

  13. Wu JP, Zhang Y, Luo XJ, She YZ, Yu LH, Chen SJ, Mai BX. A review of polybrominated diphenyl ethers and alternative brominated flame retardants in wildlife from China: levels, trends, and bioaccumulation characteristics. J Environ Sci China. 2012;24(2):183–94.

    Article  CAS  Google Scholar 

  14. Velencoso MM, Ramos MJ, Klein R, Lucas AD, Rodriguez JF. Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols. Polym Degrad Stabil. 2014;101:40–51.

    Article  CAS  Google Scholar 

  15. Subasinghe A, Bhattacharyya D. Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites. Compos Part A Appl Sci Manuf. 2014;65:91–9.

    Article  CAS  Google Scholar 

  16. Janowska G, Rybiński P. Influence of carbon black on thermal properties and flammability of cross-linked elastomers. J Therm Anal Calorim. 2008;91(3):697–701.

    Article  CAS  Google Scholar 

  17. Zhang QJ, Zhan J, Zhou KQ, Lu HD, Zeng WR, Stec AA. The influence of carbon nanotubes on the combustion toxicity of PP/intumescent flame retardant composites. Polym Degrad Stabil. 2015;115:38–44.

    Article  Google Scholar 

  18. Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S. Effective properties of carbon black filled natural rubber: experiments and modeling. Compos Part A Appl Sci Manuf. 2008;39(7):1141–9.

    Article  Google Scholar 

  19. Wen X, Tian NN, Gong J, Chen Q, Qi YL, Liu Z, Liu J, Jiang ZW, Chen XC, Tang T. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym Adv Technol. 2013;24(11):971–7.

    Article  CAS  Google Scholar 

  20. Chen XL, Jiao CM. Thermal degradation characteristics of a novel flame retardant coating using TG-IR technique. Polym Degrad Stabil. 2008;93(12):2222–5.

    Article  CAS  Google Scholar 

  21. Dong YY, Gui Z, Hu Y, Wu Y, Jiang SY. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mater. 2012;209:34–9.

    Article  Google Scholar 

  22. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M. Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater. 2012;36(3):203–15.

    Article  CAS  Google Scholar 

  23. Tsai KC. Orientation effect on cone calorimeter test results to assess fire hazard of materials. J Hazard Mater. 2009;172(2):763–72.

    Article  CAS  Google Scholar 

  24. Schartel B, Hull TR. Development of fire-retarded materials-Interpretation of cone calorimeter data. Fire Mater. 2007;31:327–54.

    Article  CAS  Google Scholar 

  25. Zhang P, Song L, Lu HD, Hu Y, Xing WY, Ni JX, Wang J. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system. Polym Degrad Stabil. 2009;94(2):201–7.

    Article  CAS  Google Scholar 

  26. Hu WZ, Zhan J, Wang X, Hong NN, Wang BB, Song L, Stec AA, Hull TR, Wang J, Hu Y. Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res. 2014;53(8):3073–83.

    Article  CAS  Google Scholar 

  27. Paliesková J, Pajtášová M, Feriancová A, Ondrušová D, Holcová K, Vavro J. Thermal properties of fillers based on organoclays in the polymeric materials. J Therm Anal Calorim. 2015;119(2):939–43.

    Article  Google Scholar 

  28. Li LL, Wang G, Wang SY, Qin S. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim. 2013;114(3):1183–9.

    Article  CAS  Google Scholar 

  29. Chen XL, Zhuo JL, Jiao CM. Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stabil. 2012;97(11):2143–7.

    Article  CAS  Google Scholar 

  30. Chen XL, Jiao CM, Zhang J. Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim. 2011;104(3):1037–43.

    Article  CAS  Google Scholar 

  31. Simkovic I. TG/DTG/DTA evaluation of flame retarded cotton fabrics and comparison to cone calorimeter data. Carbohyd Polym. 2012;90(2):976–81.

    Article  CAS  Google Scholar 

  32. Jiao CM, Dong J, Chen XL, Li SX. Influence of T31 content on combustion and thermal degradation behaviors on flame-retardant epoxy composites. J Therm Anal Calorim. 2013;114(3):1201–6.

    Article  CAS  Google Scholar 

  33. Kunze R, Schartel B, Bartholmai M, Neubert D, Schriever R. TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings. J Therm Anal Calorim. 2002;70(3):897–909.

    Article  CAS  Google Scholar 

  34. Li YT, Li B, Dai JF, Jia H, Gao SL. Synergistic effects of lanthanum oxide on a novel intumescent flame retardant polypropylene system. Polym Degrad Stabil. 2008;93(1):9–16.

    Article  CAS  Google Scholar 

  35. Pan MZ, Mei CT, Du J, Li GC. Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites. Compos Part A Appl Sci Manuf. 2014;66:128–34.

    Article  CAS  Google Scholar 

  36. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68(2):335–57.

    Article  CAS  Google Scholar 

  37. Isitman NA, Kaynak C. Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polym Degrad Stabil. 2010;95(9):1523–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51106078, 51206084), the University Research and Development Projects from Shandong Province (J14LA13), and the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanmei Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhao, X., Ma, C. et al. Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 126, 1821–1830 (2016). https://doi.org/10.1007/s10973-016-5815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5815-x

Keywords

Navigation