Skip to main content
Log in

Study of thermal and mechanical properties of a biocomposite based on natural rubber and 45S5 Bioglass® particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biocomposites based on natural rubber (NR) reinforced with 45S5 Bioglass® (BG) particles were obtained by casting/evaporation method in which NR was dissolved in chloroform and mixed with BG particles. Structural, mechanical, and thermal tests were performed on the biocomposites to evaluate the influence of BG particles on the properties of the NR matrix. Thermogravimetric tests (TG/DTG) of the biocomposites showed decomposition profiles similar to that of NR, and the main peak of the DTG curve was well defined in the temperature range 300–450 °C, characteristic of the structural degradation of NR. The TG analysis also revealed that the thermal stability of the samples increases with the increasing quantity of BG in the biocomposite. DMA tests showed higher storage modulus (E′) values for samples with larger amounts of BG; however, above the T g, the E′ value tended to zero due to the increased mobility of the polymer chains. By analyzing tan δ, the T g values were calculated to be −46 and −50 °C for NR and the biocomposite samples, respectively. Mechanical testing demonstrated that the addition of BG to the biocomposite improved the mechanical properties of the samples. The samples became more rigid with the increasing quantity of BG, as demonstrated by decreasing deformation and the increasing elastic modulus (Y) and breaking strength of the samples. The BG particles positively affected the mechanical and thermal properties of the biocomposite, allowing its use in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.

    Article  CAS  Google Scholar 

  2. Ige OO, Umoru LE, Aribo S. Natural products: a minefield of biomaterials. ISRN Mater Sci. 2012;2012:1–20.

    Article  Google Scholar 

  3. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants. 2000;15:675–90.

    CAS  Google Scholar 

  4. Boccaccini AR, Gough JE. Tissue engineering using ceramics and polymers. 2nd ed. New York: CRC Press; 2007.

    Book  Google Scholar 

  5. Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78.

    Article  CAS  Google Scholar 

  6. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  CAS  Google Scholar 

  7. Reilly GC, Radin S, Chen AT, Ducheyne P. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials. 2007;28:4091–7.

    Article  CAS  Google Scholar 

  8. Hench LL, Wilson J. Introduction. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1993. p. 1–24.

    Chapter  Google Scholar 

  9. Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86.

    Article  CAS  Google Scholar 

  10. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910.

    Article  CAS  Google Scholar 

  11. Bertolla L, Dlouhý I, Philippart A, Boccaccini AR. Mechanical reinforcement of Bioglass®-based scaffolds by novel polyvinyl-alcohol/microfibrillated cellulose composite coating. Mater Lett. 2014;118:204–7.

    Article  CAS  Google Scholar 

  12. Eqtesadi S, Motealleh A, Perera FH, Pajares A, Miranda P. Poly-(lactic acid) infiltration of 45S5 Bioglass® robocast scaffolds: chemical interaction and its deleterious effect in mechanical enhancement. Mate Lett. 2016;163:196–200.

    Article  CAS  Google Scholar 

  13. Oliveira AAR, Carvalho SM, Leite MF, Oréfice RL, Pereira MM. Development of biodegradable polyurethane and bioactive glass nanoparticles scaffolds for bone tissue engineering applications. J Biomed Mater Res A. 2012;100:1387–96.

    Article  Google Scholar 

  14. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38:1487–503.

    Article  CAS  Google Scholar 

  15. Mansur HS, Costa HS. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J. 2008;137:72–83.

    Article  CAS  Google Scholar 

  16. Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol. 2003;63:2417–29.

    Article  CAS  Google Scholar 

  17. Kim IY, Sugino A, Kikuta K, Ohtsuki C. Bioactive composites consisting of PEEK and calcium silicate powders. J Biomater Appl. 2009;24:105–18.

    Article  CAS  Google Scholar 

  18. Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang I-M. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C. 2014;38:63–72.

    Article  CAS  Google Scholar 

  19. Hild N, Tawakoli PN, Halter JG, Sauer B, Buchalla W, Stark WJ, Mohn D. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass. Acta Biomater. 2013;9:9118–25.

    Article  CAS  Google Scholar 

  20. Stoppel WL, Ghezzi CE, McNamara SL, Black LD III, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng. 2014;43:657–80.

    Article  Google Scholar 

  21. Gomide VS, Zonari A, Ocarino NM, Goes AM, Serakides R, Pereira MM. In vitro and in vivo osteogenic potential of bioactive glass–PVA hybrid scaffolds colonized by mesenchymal stem cells. Biomed Mater. 2012;7:015004.

    Article  Google Scholar 

  22. Eldesoqi K, Henrich D, El-Kady AM, Arbid MS, Abd El-Hady BM, Marzi I, Seebach C. Safety evaluation of a bioglass-polylactic acid composite scaffold seeded with progenitor cells in a rat skull critical-size bone defect. PLoS One. 2014;9:e87642.

    Article  Google Scholar 

  23. Dong S, Sun J, Li Y, Li J, Cui W, Li B. Electrospun nanofibrous scaffolds of poly (L-lactic acid)-dicalcium silicate composite via ultrasonic-aging technique for bone regeneration. Mater Sci Eng C. 2014;35:426–33.

    Article  CAS  Google Scholar 

  24. Rescignano N, Fortunati E, Montesano S, Emiliani C, Kennya JM, Martino S, Armentano I. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohyd Polym. 2014;99:47–58.

    Article  CAS  Google Scholar 

  25. Marelli B, Ghezzi CE, Barralet JE, Boccaccini AR, Nazhat SN. Three-dimensional mineralization of dense nanofibrillar collagen–bioglass hybrid scaffolds. Biomacromolecules. 2010;11:1470–9.

    Article  CAS  Google Scholar 

  26. Liang SL, Cook WD, Thouas GA, Chen QZ. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials. 2010;31:8516–29.

    Article  CAS  Google Scholar 

  27. Hajiali H, Hosseinalipour M, Karbasi S, Shokrgozar MA. The influence of bioglass® nanoparticles on the biodegradation and biocompatibility of poly(3-hydroxybutyrate) scaffolds. Int J Artif Organs. 2012;35:1015–24.

    Article  CAS  Google Scholar 

  28. Chen Q, Garcia RP, Munoz J, Larraya UP, Garmendia N, Yao Q, Boccaccini AL. Cellulose nanocrystals-bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition; in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl Mater Interfaces. 2015;7:24715–25.

    Article  CAS  Google Scholar 

  29. Li L, Zuo Y, Zou Q, Yang B, Lin L, Li J, Li Y. Hierarchical structure and mechanical improvement of an n-HA/GCO-PU composite scaffold for regeneration. ACS Appl Mater Interface. 2015;7:22618–29.

    Article  CAS  Google Scholar 

  30. Cornish K. Similarities and differences in rubber biochemistry among plant species. Phytochemistry. 2001;57:1123–34.

    Article  CAS  Google Scholar 

  31. Mark HF, Bikales NM, Oberberger CG, Menges G. Encyclopedia of polymer science and technology. 3rd ed. New York: Wiley; 2003.

    Google Scholar 

  32. Frade AA, Valverde RV, Assis RV, Coutinho-Netto J, Foss NT. Chronic phlebopathic cutaneous ulcer: a therapeutic proposal. Int J Dermatol. 2001;40:238–40.

    Article  CAS  Google Scholar 

  33. Steinbüchel A. Production of rubber-like polymers by microorganisms. Curr Opin Microbiol. 2003;60:261–70.

    Article  Google Scholar 

  34. Araujo MM, Massuda ET, Hyppolito MA. Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cirúrgica Brasileira. 2012;27:566–71.

    Article  Google Scholar 

  35. Silva GA, Coutinho OP, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering applications in bone. J Tissue Eng Regen Med. 2007;1:97–109.

    Article  CAS  Google Scholar 

  36. Nascimento RM, Faita FL, Agostini DLS, Job AE, Guimarães FEG, Bechtold IH. Production and characterization of natural rubber–Ca/P blends for biomedical purposes. Mater Sci Eng C. 2014;39:29–34.

    Article  CAS  Google Scholar 

  37. Borges FA, Bolognesi LFC, Trecco A, Drago BC, Arruda LB, Filho PNL, Pierri EG, Graeff CFO, Santos AG, Miranda MCR, Herculano RD. Natural rubber latex: study of a novel carrier for Casearia sylvestris Swartz delivery. ISRN Polym Sci. 2014;2014:1–5.

    Article  Google Scholar 

  38. Bolognesi LFC, Borges LA, Cinman JLF, Silva RG, Santos AG, Herculano RD. Natural latex films as carrier for casearia sylvestris swartz extract associated with ciprofloxacin. Am Chem Sci J. 2015;5:17–25.

    Article  Google Scholar 

  39. Barboza-Filho CG, Cabrera FC, Dos Santos RJ, De Saja Saez JA, Job AE. The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. Exp Parasitol. 2012;130:152–8.

    Article  CAS  Google Scholar 

  40. Oliveira LCS, Arruda EJ, Costa RB, Gonçalves PS, Delben A. Evaluation of latex from five Hevea clones grown in São Paulo State, Brazil. Thermochim Acta. 2003;398:259–63.

    Article  Google Scholar 

  41. Silva MJ, Sanches AO, Medeiros ES, Mattoso LHC, McMahan CM, Malmonge JA. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils. J Therm Anal Calorim. 2014;117:387–92.

    Article  CAS  Google Scholar 

  42. Jawaid M, Abdul Khalil HPS, Alattas OS. Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A. 2012;43:288–93.

    Article  CAS  Google Scholar 

  43. Ornaghi HL, Bolner AS, Fiorio R, Zattera AJ, Amico SC. Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci. 2010;118:887–96.

    CAS  Google Scholar 

  44. Sanches AO, Ricco LHS, Malmonge LF, Silva MJ, Sakamoto WK, Malmonge JA. Influence of cellulose nanofibrils on soft and hard segments of polyurethane/cellulose nanocomposites and effect of humidity on their mechanical properties. Polym Test. 2014;40:99–105.

    Article  CAS  Google Scholar 

  45. Manoharan S, Suresha B, Ramadoss G, Bharath B. Effect of short fiber reinforcement on mechanical properties of hybrid phenolic composites. J Mater. 2014;. doi:10.1155/2014/478549.

    Google Scholar 

  46. Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A. Effect of jute fiber loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos B. 2013;45:619–24.

    Article  CAS  Google Scholar 

  47. Uma Devi L, Bhagawan SS, Thomas S. Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym Compos. 2010;31(6):956–65.

    Google Scholar 

  48. Siqueira G, Abdillahi H, Bras J, Dufresne A. High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose. 2010;17:289–98.

    Article  CAS  Google Scholar 

  49. Chan KW, Wong HM, Yeung KWK, Tjong SC. Polypropylene biocomposites with boron nitride and nanohydroxyapatite reinforcements. Materials. 2015;8:992–1008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.J., Soares, V.O., Dias, G.C. et al. Study of thermal and mechanical properties of a biocomposite based on natural rubber and 45S5 Bioglass® particles. J Therm Anal Calorim 131, 735–742 (2018). https://doi.org/10.1007/s10973-016-5933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5933-5

Keywords

Navigation