Skip to main content
Log in

Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc

Kinetics and crystalline structures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The crystallization kinetics and the melting behavior of PLA and PLA with talc are investigated by dynamic scanning calorimeter and optical microscopy. The polymorphic aspect of PLA was highlighted by analyzing the melting process throughout heating after isothermal crystallization. The melting process of PLA with 5 mass% talc (PLAT5) shows the same thermal transitions as for PLA alone. The thermodynamic melting temperature of PLA and PLAT5 is determined to be 167.7 °C. The effects of the temperature and the cooling rate on the crystallization kinetics of PLA are analyzed. Finally, a simple and efficient protocol is defined to model the isothermal and the non-isothermal crystallization taking into account the polymorphism of PLA. Good agreement is found between the predictions of the proposed model and the experimental results under isothermal and non-isothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vroman I, Tighzert L. Biodegradable polymers. Materials (Basel). 2009;2:307–44.

    Article  CAS  Google Scholar 

  2. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  3. Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. Nat Fibers, Biopolym Biocompos. 2005;16:527–77.

    Google Scholar 

  4. Courgneau C, Ducruet V, Avérous L, Grenet J, Domenek S. Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent. Polym Eng Sci. 2013;53:1085–98.

    Article  CAS  Google Scholar 

  5. Li C, Dou Q, Bai Z, Lu Q. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122:407–17.

    Article  CAS  Google Scholar 

  6. Tábi T, Suplicz A, Czigány T, Kovács JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118:1419–30.

    Article  Google Scholar 

  7. De Santis F, Pantani R. Melt compounding of poly (Lactic Acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res. 2015;22:242.

    Article  Google Scholar 

  8. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  9. Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.

    Article  CAS  Google Scholar 

  10. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  11. Hoffman JD, Weeks JJ. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys. 1962;37:1723.

    Article  CAS  Google Scholar 

  12. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly (L-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.

    Article  CAS  Google Scholar 

  13. Di Lorenzo ML. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J Appl Polym Sci. 2006;100:3145–51.

    Article  Google Scholar 

  14. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci. 2008;107:54–62.

    Article  CAS  Google Scholar 

  15. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, et al. Crystallization and melting behavior of poly (L-lactic acid). Macromolecules. 2007;40:9463–9.

    Article  CAS  Google Scholar 

  16. Pan P, Zhu B, Kai W, Dong T, Inoue Y. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules. 2008;41:4296–304.

    Article  CAS  Google Scholar 

  17. Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). J Polym Sci Part B: Polym Phys. 2004;42:25–32.

    Article  CAS  Google Scholar 

  18. Kong Y, Hay J. Multiple melting behaviour of poly(ethylene terephthalate). Polymer (Guildf). 2003;44:623–33.

    Article  CAS  Google Scholar 

  19. Nichols ME, Robertson RE. The origin of multiple melting endotherms in the thermal analysis of polymers. J Polym Sci Part B: Polym Phys. 1992;30:305–7.

    Article  CAS  Google Scholar 

  20. Tsuji H, Tezuka Y, Saha SK, Suzuki M, Itsuno S. Spherulite growth of L-lactide copolymers: effects of tacticity and comonomers. Polymer (Guildf). 2005;46:4917–27.

    Article  CAS  Google Scholar 

  21. Di Lorenzo ML, Silvestre C. Measurement of spherulite growth rates using tailored temperature programs. Thermochim Acta. 2003;396:67–73.

    Article  Google Scholar 

  22. Evans UR. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans Faraday Soc. 1945;41:365.

    Article  CAS  Google Scholar 

  23. Kolmogoroff AN. Zur Statistik Der Kristallisationsvorgänge in Metallen. Izv Akad Nauk SSSR, Ser Mat. 1937;1:355–9.

    Google Scholar 

  24. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights. Eur Polym J. 2007;43:4431–9.

    Article  CAS  Google Scholar 

  25. Day M, Nawaby AV, Liao X. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J Therm Anal Calorim. 2006;86:623–9.

    Article  CAS  Google Scholar 

  26. Najafi N, Heuzey MC, Carreau PJ. Crystallization behavior and morphology of polylactide and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci. 2013;53:1053–64.

    Article  CAS  Google Scholar 

  27. Kalish JP, Aou K, Yang X, Hsu SL. Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(L-lactic acid). Polymer (Guildf). 2011;52:814–21.

    Article  CAS  Google Scholar 

  28. Rathi S, Kalish JP, Coughlin EB, Hsu SL. Utilization of oligo(lactic acid) for studies of chain conformation and chain packing in poly(lactic acid). Macromolecules. 2011;44:3410–5.

    Article  CAS  Google Scholar 

  29. Wasanasuk K, Tashiro K. Theoretical and experimental evaluation of crystallite moduli of various crystalline forms of poly(L-lactic acid). Macromolecules. 2012;45:7019–26.

    Article  CAS  Google Scholar 

  30. Zinet M, El Otmani R, Boutaous M, Chantrenne P. Numerical modeling of nonisothermal polymer crystallization kinetics: Flow and thermal effects. Polym Eng Sci. 2010;50:2044–59.

    Article  CAS  Google Scholar 

  31. Boutaous M, Gomes S, Zakariaa R, Zinet M, Bourgin P. Analysis of the microstructure of polymers with regard to their thermomechanical history: STHM and DSC measurements. Fluids Eng Syst Technol ASME. 2013;7A:V07AT08A029.

    Article  Google Scholar 

  32. Hoffman JD, Miller RL. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer (Guildf). 1997;38:3151–212.

    Article  CAS  Google Scholar 

  33. Koscher E, Fulchiron R. Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer (Guildf). 2002;43:6931–42.

    Article  CAS  Google Scholar 

  34. Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.

    Article  CAS  Google Scholar 

  35. Li J, Zhou C, Wang G, Tao Y, Liu Q, Li Y. Isothermal and nonisothermal crystallization kinetics of elastomeric polypropylene. Polym Test. 2002;21:583–9.

    Article  CAS  Google Scholar 

  36. Mao B, Cebe P. Avrami analysis of melt crystallization behavior of Trogamid. J Therm Anal Calorim. 2013;113:545–50.

    Article  CAS  Google Scholar 

  37. Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II Consideration of the isokinetic condition. J Appl Polym Sci. 1973;17:1031–41.

    Article  CAS  Google Scholar 

  38. Ozawa T. Kinetics of non-isothermal crystallization. Polymer (Guildf). 1971;12:150–8.

    Article  CAS  Google Scholar 

  39. Patel RM, Spruiell JE. Crystallization kinetics during polymer processing—analysis of available approaches for process modeling. Polym Eng Sci. 1991;31:730–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Boutaous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaa, Z., Boutaous, M., Xin, S. et al. Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim 128, 687–698 (2017). https://doi.org/10.1007/s10973-016-5961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5961-1

Keywords

Navigation