Skip to main content
Log in

A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A simple and linear integral method which uses multiple heating schedules to evaluate the kinetic parameters has been proposed by Trache–Abdelaziz–Siouani (TAS). This approach is based on the combination of the iterative modified Coats–Redfern equation with the kinetic compensation parameters (ln A = aE + b). The suggested method was applied to experimental non-isothermal data obtained from the literature for decomposition of gun propellant containing the mixed ester of triethylene glycol dinitrate and nitroglycerin studied by differential scanning calorimeter at two different pressures (0.1 and 2 MPa). This method leads to consistent pre-exponential factor and kinetic model with those obtained from the accurate approximation of Tang et al. using the activation energy derived from either the integral nonlinear Vyazovkin procedure or the Friedman’s differential method. These kinetic parameters are reliable with those obtained by two integral linear (iterative Kissinger–Akahira–Sunose and iterative Flynn–Wall–Ozawa) methods as well. The superiority of TAS method is due to the possibility of obtaining all the kinetic parameters in an objective manner with a reasonable computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  2. Trache D, et al. Comments on “Pyrolysates distribution and kinetics of Shenmu long flame coal” by Yuankui Lin et al. [Energy Convers. Manage. 86 (2014) 428–434]. Manage. 2016;119:488–9.

    CAS  Google Scholar 

  3. Lee M-H, Chen J-R, Das M, Hsieh T-F, Shu C-M. Thermokinetic parameter evaluation by DSC and TAM III along with accountability of mass loss by TG from the thermal decomposition analyses of benzoyl peroxide. J Therm Anal Calorim. 2015;122(3):1143–50.

    Article  CAS  Google Scholar 

  4. Varfolomeev MA, Nagrimanov RN, Galukhin AV, Vakhin AV, Solomonov BN, Nurgaliev DK, et al. Contribution of thermal analysis and kinetics of Siberian and Tatarstan regions crude oils for in situ combustion process. J Therm Anal Calorim. 2015;122(3):1375–84.

    Article  CAS  Google Scholar 

  5. Wang G, Ge Z, Luo Y. Thermal decomposition kinetics of poly (3,3′-bisazidomethyl oxetane-3-azidomethyl-3′-methyl oxetane). J Therm Anal Calorim. 2015;122(3):1515–23.

    Article  CAS  Google Scholar 

  6. Kok MV, Topa E. Thermal characterization and model-free kinetics of biodiesel sample. J Therm Anal Calorim. 2015;122(2):955–61.

    Article  CAS  Google Scholar 

  7. Liu Q, Han X, Li Q, Huang Y, Jiang X. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J Therm Anal Calorim. 2014;116(1):511–7.

    Article  CAS  Google Scholar 

  8. Fandaruff C, Araya-Sibaja A, Pereira R, Hoffmeister C, Rocha H, Silva M. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2014;115(3):2351–6.

    Article  CAS  Google Scholar 

  9. Du X, Li X, Zou M, Yang R, Pang S. Thermal kinetic study of 1-amino-1,2,3-triazolium nitrate. J Therm Anal Calorim. 2014;115(2):1195–203.

    Article  CAS  Google Scholar 

  10. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124:1485–96.

    Article  CAS  Google Scholar 

  11. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.

    Article  CAS  Google Scholar 

  12. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:136–44.

    Article  Google Scholar 

  13. Santhosh G, Soumyamol P, Sreejith M, Reshmi S. Isoconversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.

    Article  CAS  Google Scholar 

  14. He Y, Liao S, Chen Z, Li Y, Xia Y, Wu W, et al. Nonisothermal kinetics study with advanced isoconversional procedure and DAEM. J Therm Anal Calorim. 2014;115(1):237–45.

    Article  CAS  Google Scholar 

  15. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119(1):651–7.

    Article  CAS  Google Scholar 

  16. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115(1):853–9.

    Article  Google Scholar 

  17. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  18. Kujirai T, Akahira T. Effect of temperature on the deterioration of fibrous insulating materials. Sci Pap Inst Phys Chem Res. 1925;2:223–52.

    CAS  Google Scholar 

  19. Mishra G, Kumar J, Bhaskar T. Kinetic studies on the pyrolysis of pinewood. Bioresour Technol. 2015;182:282–8.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.

    Book  Google Scholar 

  21. Sbirrazzuoli N. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way. Thermochim Acta. 2013;564:59–69.

    Article  CAS  Google Scholar 

  22. Coats A, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  23. Trache D, et al. Comments on “Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites” By Reza Arjmandi et al. Int J Biol Macromol. 2016;88:497–8.

    Article  CAS  Google Scholar 

  24. Trache D. Comments on “Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits”. Fuel Process Technol. 2016;. doi:10.1016/j.fuproc.2016.05.037.

    Google Scholar 

  25. Urbanovici E, Popescu C, Segal E. Improved iterative version of the Coats-Redfern method to evaluate non-isothermal kinetic parameters. J Therm Anal Calorim. 1999;58(3):683–700.

    Article  CAS  Google Scholar 

  26. Trache D. Comments on “Thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohydr Polym. 2016;151:535–7. doi:10.1016/j.carbpol.2016.05.106.

    Article  CAS  Google Scholar 

  27. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energ Fuel. 1999;13(1):1–22.

    Article  CAS  Google Scholar 

  28. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  29. Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11(3):445–7.

    Article  Google Scholar 

  30. Pérez-Maqueda L, Criado J. The accuracy of Senum and Yang’s approximations to the Arrhenius integral. J Therm Anal Calorim. 2000;60(3):909–15.

    Article  Google Scholar 

  31. Gao Z, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversional methods. Thermochim Acta. 2001;369(1):137–42.

    Article  CAS  Google Scholar 

  32. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis. J Therm Anal Calorim. 2004;78(1):283–93.

    Article  CAS  Google Scholar 

  33. Chen Z, Chai Q, Liao S, Chen X, He Y, Li Y, et al. Nonisothermal kinetic study: IV. Comparative methods to evaluate E a for thermal decomposition of KZn2 (PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51(26):8985–91.

    Article  CAS  Google Scholar 

  34. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  35. Genieva S, Vlaev L, Atanassov A. Study of the thermooxidative degradation kinetics of poly (tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99(2):551–61.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Lesnikovich A. Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters. Thermochim Acta. 1988;128:297–300.

    Article  Google Scholar 

  37. Vyazovkin S, Linert W. False isokinetic relationships found in the nonisothermal decomposition of solids. Chem Phys. 1995;193(1):109–18.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Linert W. Thermally induced reactions of solids: isokinetic relationships of non-isothermal systems. Int Rev Phys Chem. 1995;14(2):355–69.

    Article  CAS  Google Scholar 

  39. Liu L, Guo Q-X. Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem Rev. 2001;101(3):673–96.

    Article  CAS  Google Scholar 

  40. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408(1):39–43.

    Article  CAS  Google Scholar 

  41. Brown M, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Aa Burnham, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355(1):125–43.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  43. J-h Yi, Zhao F-q Xu, S-y Zhang L-y, H-x Gao. Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater. 2009;165(1):853–9.

    Google Scholar 

  44. Šimon P. Isoconversional methods. J Therm Anal Calorim. 2004;76(1):123–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalal Trache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trache, D., Abdelaziz, A. & Siouani, B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim 128, 335–348 (2017). https://doi.org/10.1007/s10973-016-5962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5962-0

Keywords

Navigation