Skip to main content
Log in

Thermal properties of europium nitrate hexahydrate Eu(NO3)3·6H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hexahydrate of europium nitrate hexahydrate Eu(NO3)3·6H2O shows no phase transitions in the range of −40 to 76 °C when it melts in its own water of crystallization. It was shown that the thermal decomposition is a complex step-wise process, which starts with the simultaneous condensation of 6 mol of the initial monomer Eu(NO3)3·6H2O into a cyclic cluster 6[Eu(NO3)3·6H2O]. This hexamer gradually loses water and nitric acid, and a series of intermediate amorphous oxynitrates is formed. The removal of HNO3 azeotrope is essentially a continuous process occurring in the liquid phase. At higher temperatures, oxynitrates undergo further degradation, lose water, nitrogen dioxide, and oxygen, and finally, after having lost lattice water, are transformed into europium oxide. All mass losses are satisfactorily accounted for under the proposed scheme of thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nazarov M, Young ND. New generation of terbium and europium activated phosphors. Boca Raton: Pan Stanford Publishing; 2011.

    Google Scholar 

  2. Stumpf T, Bolte M. Tetraaquatrinitratoeuropium(III) dihydrate. Acta Cryst E Struct Rep Online. 2001;57:10–1.

    Article  Google Scholar 

  3. Strydom CA, Van Vuuren CPJ. The thermal decomposition of lanthanum(III), praseodymium (III) and europium(III) nitrates. Thermochim Acta. 1988;124:277–83.

    Article  CAS  Google Scholar 

  4. Hussein GAM, Balboul BAA, A-Warith MA, Othman AGM. Thermal genesis course and characterization of praseodymium oxide from praseodymium nitrate hydtrate. Thermochim Acta. 2001;369:59–66.

    Article  CAS  Google Scholar 

  5. Melnikov P, Nascimento VA, Consolo LZZ, Silva AF. Mechanism of thermal decomposition of yttrium nitrate hexahydrate Y(NO3)3·6H2O and modeling of intermediate oxynitrates. J Therm Anal Calorim. 2013;111:115–9.

    Article  CAS  Google Scholar 

  6. Melnikov P, Nascimento VA, Consolo LZZ. Computerized modeling of intermediate compounds formed during thermal decomposition of gadolinium nitrate hydrate. Russ J Phys Chem. 2012;86:1659–63.

    Article  CAS  Google Scholar 

  7. Melnikov P, Nascimento VA, Arkhangelsky IV, Consolo LZZ. Thermal decomposition mechanism of aluminum nitrate octahydrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2013;111:543–8.

    Article  CAS  Google Scholar 

  8. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermolysis mechanism of chromium nitrate nonahydrate and computerized modeling of intermediate products. J Therm Anal Calorim. 2013;114:1021–7.

    Article  CAS  Google Scholar 

  9. Wieczorek-Ciurowa K, Kozak AJ. The thermal decomposition of Fe(NO3)3·9H2O. J Therm Anal Calorim. 1999;58:647–51.

    Article  CAS  Google Scholar 

  10. Melnikov P, Nascimento VA, Arkhangelsky IV, Zanoni Consolo LZ, de Oliveira LCS. Thermal decomposition mechanism of iron (III) nitrate and characterization of intermediate products by the technique of computerized modeling. J Therm Anal Calorim. 2014;115:145–51.

    Article  CAS  Google Scholar 

  11. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ, de Oliveira LCS, Herrero AS. Thermolysis mechanism of dysprosium hexahydrate nitrate Dy(NO3)3·6H2O and modeling of intermediate decomposition products. J Therm Anal Calorim. 2015;122:571–8.

    Article  CAS  Google Scholar 

  12. Melnikov P, Arkhangelsky IV, Nascimento VA, Silva AF, Zanoni Consolo LZ. Thermolysis mechanism of samarium nitrate hexahydrate. J Therm Anal Calorim. 2014;118:1537–41.

    Article  CAS  Google Scholar 

  13. Melnikov P, Nascimento VA, Zanoni Consolo LZ. Thermal decomposition of gallium nitrate hydrate and modeling of thermolysis products. J Therm Anal Calorim. 2012;107:1117–21.

    Article  CAS  Google Scholar 

  14. Melnikov P, Nascimento VA, Arkhangelsky IV, Silva AF, Zanoni Consolo LZ. Thermogravimetric study of the scandium nitrate hexahydrate thermolysis and computer modeling of intermediate oxynitrates. J Therm Anal Calorim. 2015;119:1073–9.

    Article  CAS  Google Scholar 

  15. Grivel JC. Thermal decomposition of Ln(C2H5CO2)3 (Ln = Ho, Er, Tm and Yb). J Therm Anal Calorim. 2012;109:81–8.

    Article  CAS  Google Scholar 

  16. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. www.http//webbook.nist/chemistry. Accessed 21 April 2016.

  17. Manelis GB, Nazin GM, Rubtsov YuT, Strunin VA. Thermal decomposition and combustion of explosives and propellants. Boca Raton: CRC Press; 2003.

    Google Scholar 

  18. Bibart CH, Ewing GE. Vibrational spectrum of gaseous N2O3. J Chem Phys. 1974;61:1293–9.

    Article  CAS  Google Scholar 

  19. Giester G, Zak Z, Unfried P. Synthesis and crystal structure of rare earth basic nitrates hydrates Part III, [Ln6O(OH)8(H2O)12(NO3)6](NO3)2 xH2O, Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; x = 3, 4, 5, 6. J Alloy Compd. 2009;481:116–28 (and references therein).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to CNPq and FUNDECT (Brazilian agencies) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, P., Arkhangelsky, I.V., Nascimento, V.A. et al. Thermal properties of europium nitrate hexahydrate Eu(NO3)3·6H2O. J Therm Anal Calorim 128, 1353–1358 (2017). https://doi.org/10.1007/s10973-016-6047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6047-9

Keywords

Navigation