Skip to main content
Log in

Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior of halloysite selected from Erdos, Inner Mongolia Autonomous Region in China, was investigated by thermogravimetry and differential thermal gravity (TG–DTG), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscope (SEM). The XRD results indicated that the mineralogical composition of halloysite sample was determined as 7 Å halloysite with the d (001) value of 0.734 nm, a small amount of 10 Å halloysite with the d (001) value of 0.998 nm, quartz, calcite, anhydrite, siderite, and analcite. The crystal chemical formula of halloysite specimen is (Ca0.007Na0.039K0.048)(Al1.935Fe 3+0.032 Mn 2+0.003 Ti 4+0.002 Mg 2+0.015 Ca 2+0.021 )2 [(Si1.935Al 3+0.065 )2](OH)4·2H2O according to the oxygen atom method. The TG–DTG–DSC data showed that a small amount of water molecule layer in the interlayer and the dehydroxylation was observed at 493.6 °C. The XRD, FT-IR, and SEM data clearly show that the structure changes and dehydroxylation of the halloysite with the temperature increased from 200 to 1200 °C. The dehydration of the halloysite is followed by the loss of intensity and evolution of the OH vibration bands and the change in microstructure. Dehydroxylation is followed by the decrease in the intensity of the bands at 3696 and 3620 cm−1, which is completely disappeared at 700 °C. The thermal behavior of halloysite was influenced by the mineralogy composition and impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berthier P. Analyse de l’halloysite. Ann Chim Phys. 1826;32:332–5.

    Google Scholar 

  2. Bates TF, Hildebrand FA, Swineford A. Morphology and structure of endellite and halloysite. Am Mineral. 1950;35:463–84.

    CAS  Google Scholar 

  3. Frost RL. Hydroxyl deformation in kaolins. Clay Clay Miner. 1998;46:280–9.

    Article  CAS  Google Scholar 

  4. Singh B. Why does halloysite roll? A new model. Clay Clay Miner. 1996;44:191–6.

    Article  CAS  Google Scholar 

  5. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals: a review. Clay Clay Miner. 2005;40:383–426.

    Article  CAS  Google Scholar 

  6. Joussein E, Petit S, Delvaux B. Behavior of halloysite clay under formamide treatment. Appl Clay Sci. 2007;35:17–24.

    Article  CAS  Google Scholar 

  7. Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112–113:75–93.

    Article  Google Scholar 

  8. Cheng H, Liu Q, Yang J, Zhang J, Frost RL. Thermal analysis and infrared emission spectroscopic study of halloysite–potassium acetate intercalation compound. Thermochim Acta. 2010;511:124–8.

    Article  CAS  Google Scholar 

  9. Nicolini KP, Fukamachi CR, Wypych F, Mangrich AS. Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J Colloid Interf Sci. 2009;338:474–9.

    Article  CAS  Google Scholar 

  10. Cheng H, Liu Q, Yag J, Zhang J, Frost RL, Du X. Infrared spectroscopic study of halloysite–potassium acetate intercalation complex. J Mol Struct. 2011;990:21–5.

    Article  CAS  Google Scholar 

  11. Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on halloysite nanotubes–polymer nanocomposite. Prog Polym Sci. 2014;39:1498–525.

    Article  CAS  Google Scholar 

  12. Singer A, Zarei M, Lange FM, Stahr K. Halloysite characteristics and formation in the northern Golan Heights. Geoderma. 2004;123:279–95.

    Article  CAS  Google Scholar 

  13. Horváth E, Kristóf J, Frost RL, Réder Á, Vágvölgyi V, Cseh T. Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. J Therm Anal Calorim. 2003;71:707–14.

    Article  Google Scholar 

  14. Levis SR, Deasy PB. Characterisation of halloysite for use as a microtubular drug delivery system. Int J Pharm. 2002;243:125–34.

    Article  CAS  Google Scholar 

  15. Lvov Y, Abdullayev E. Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38:1690–719.

    Article  CAS  Google Scholar 

  16. Yuan P, Tan D, Aannabi-Bergaya F, et al. Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clay Clay Miner. 2012;60:561–73.

    Article  CAS  Google Scholar 

  17. Smith ME, Neal G, Trigg MB, Drerman J. Structural characterization of the thermal transformation of halloysite by solid state NMR. Appl Magn Reson. 1993;4:157–70.

    Article  CAS  Google Scholar 

  18. Yuan P, Southon PD, Liu Z, Green MER. Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C. 2008;112:15742–51.

    Article  CAS  Google Scholar 

  19. Joussein E, Peit S, Finalips C-I. Differences in the dehydration rehydration behavior of halloysites: new evidence and interpretations. Clay Clay Miner. 2006;54:473–85.

    Article  CAS  Google Scholar 

  20. Yuan P, Thill A, Bergaya F. Thermal-treatment-induced deformations and modifications of halloysite. Knoxville: Candice Janco; 2016.

    Book  Google Scholar 

  21. Xiao-fan L, Jun-fang G, Fei-fei C, Fan Z, Ke Y. Characteristics of halloysite from Xishuangbanna Area, Yunnan Province, China. Acta Miner Sin. 2016;36:138–42.

    Google Scholar 

  22. Sun H, Peng T, Liu Y. Measurement and mechanism of layer charge of phyllosilicate with expansive layers. Acta Miner Sin. 2007;27:19–24.

    CAS  Google Scholar 

  23. Frost RL, Kristof J, Horvath E, Kloprogge JT. Rehydration and phase changes of potassium acetate-intercalated halloysite at 298 K. J Colloid Interf Sci. 2000;226:318–27.

    Article  CAS  Google Scholar 

  24. Cheng H, Liu Q, Yang J, Frost RL. Thermogravimetric analysis of selected coal-bearing strata kaolinite. Thermochim Acta. 2010;507–508:84–90.

    Article  Google Scholar 

  25. Sun J, Wu Z, Cheng H, Zhang Z, Frost RL. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta Part A. 2014;117:158–62.

    Article  CAS  Google Scholar 

  26. Alberola JA, Mondragón R, Juliá JE, Hernández L, Cabedo L. Characterization of halloysite-water nanofluid for heat transfer applications. Appl Clay Sci. 2014;99:54–61.

    Article  CAS  Google Scholar 

  27. Zhang Y, Liu Q, Wu Z, Zheng Q, Cheng H. Thermal behavior analysis of kaolinite–dimethylsulfoxide intercalation complex. J Therm Anal Calorim. 2011;110:1167–72.

    Article  Google Scholar 

  28. Szczepanik B, Słomkiewicz P, Garnuszek M, et al. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies. J Mol Struct. 2015;1084:16–22.

    Article  CAS  Google Scholar 

  29. Horváth E, Kristóf J, Kurdi R, Makó É, Khunová V. Study of urea intercalation into halloysite by thermoanalytical and spectroscopic techniques. J Therm Anal Calorim. 2011;105:53–9.

    Article  Google Scholar 

  30. Ledoux RL, White JL. Infrared study of the OH groups in expanded kaolinite. Science. 1964;143:244–6.

    Article  CAS  Google Scholar 

  31. Suárez M, García-Romero E. FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl Clay Sci. 2006;31:154–63.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (51604158) and College student innovative projects of Inner Mongolia University of Technology (Grant No. 2016046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinmin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Zhang, Y. et al. Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. J Therm Anal Calorim 129, 1333–1339 (2017). https://doi.org/10.1007/s10973-017-6324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6324-2

Keywords

Navigation