Skip to main content
Log in

DTA and FTIR of 70TeO2–(25 − x)MnO2xV2O5–5Fe2O3 tellurite glass systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of quaternary tellurite glasses in the form of 70TeO2–(25 − x)MnO2xV2O5–Fe2O3 where (0 ≤ x ≤ 25 mol%) have been prepared by the conventional melt quenching technique. Differential thermal analysis (DTA) curves of these glasses have been investigated in the temperature range 300–1093 K and at different heating rates a = (2.5, 5, 10, 20 and 40 K min−1). The glass transition temperature (T g), the crystallization temperature (T P), the glass stability (∆T) and the activation energy for crystallization have been measured. The glass transition temperature has been analyzed according to the average cross-link density, and the average stretching force constant is present in the glass. FTIR investigations showed that the absorption bands of different modes of vibration in the manganese tellurite network were shifted toward higher wave number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lakshminarayana G, Kaky KM, Baki SO, Lira A, Nayar P IV, Kityk MA Mahdi. Physical, structural, thermal, and optical spectroscopy studies of TeO2-B2O3-MoO3-ZnO-R2O (R = Li, Na, and K)/MO (M = Mg, Ca, and Pb) glasses. J Alloys Compd. 2017;690:799.

    Article  CAS  Google Scholar 

  2. Hager IZ, El-Mallawany R. Preparation and structural studies in the (70 − x) TeO2–20WO3–10Li2O–xLn2O3 glasses. J Mater Sci. 2010;45:897.

    Article  CAS  Google Scholar 

  3. Berwal N, Dhankhar S, Sharma P, Kundu RS, Punia R, Kishore N. Physical, structural and optical characterization of silicate modified bismuth–borate–tellurite glasses. J Mol Struct. 2017;1127:636.

    Article  CAS  Google Scholar 

  4. El-Zaidia MM, Ammar AA, El-Mallwany RA. Infra-red spectra, electron spin resonance spectra, and density of (TeO2)(100 − x)–(WO3)x and (TeO2)(100 − x)–(ZnCl2)x glasses. Phys Status Solidi A. 1985;91:637.

    Article  CAS  Google Scholar 

  5. Dehelean A, Rada S, Popa A, Suciu RC, Culea E. Raman, photoluminescence and EPR spectroscopic characterization of europium(III) oxide–lead dioxide–tellurite glassy network. J Lumin. 2016;177:65.

    Article  CAS  Google Scholar 

  6. Tanko YA, Ghoshal SK, Sahar MR. Ligand field and Judd–Ofelt intensity parameters of samarium doped tellurite glass. J Mol Struct. 2016;1117:64.

    Article  CAS  Google Scholar 

  7. Abdel-Kader A, El-Mallawany R, Elkholy MM. Network structure of tellurite phosphate glasses: optical absorption and infrared spectra. J Appl Phys. 1993;73:71.

    Article  CAS  Google Scholar 

  8. Sidkey MA, El Mallawany RA, Abousehly AA, Saddeek YB. Relaxation of longitudinal ultrasonic waves in some tellurite glasses. Mater Chem Phys. 2002;74:222.

    Article  CAS  Google Scholar 

  9. Salehizadeh SA, Melo BMG, Freire FNA, Valente MA, Graça MPF. Structural and electrical properties of TeO2–V2O5–K2O glassy systems. J Non Cryst Solids. 2016;443:65.

    Article  CAS  Google Scholar 

  10. El-Mallawany R, Sidkey M, Afifi H. Elastic moduli of ternary tellurite glasses at room temperature. Glass Sci Technol. 2000;73:61.

    CAS  Google Scholar 

  11. Hager IZ, El-Mallawany R, Bulou A. Luminescence spectra and optical properties of TeO2–WO3–Li2O glasses doped with Nd, Sm and Er rare earth ions. Phys B. 2011;406:972.

    Article  CAS  Google Scholar 

  12. Qin J, Zhang W, Bai S, Liu Z. Effect of Pb–Te–O glasses on Ag thick-film contact in crystalline silicon solar cells. Sol Energy Mater Sol Cells. 2016;144:256.

    Article  CAS  Google Scholar 

  13. El-Mallawany R, Sidkey M, Khafagy A, Afifi H. Ultrasonic attenuation of tellurite glasses. Mater Chem Phys. 1994;37:197.

    Article  CAS  Google Scholar 

  14. Sayyed MI, Elhouichet H. Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro-tellurite (B2O3-TeO2) glasses. Radiat Phys Chem. 2017;130:335.

    Article  CAS  Google Scholar 

  15. Aly KA, Saddeek YB, Dahshan A. Structure and crystallization kinetics of manganese lead tellurite glasses. J Therm Anal Calorim. 2015;119:1215.

    Article  CAS  Google Scholar 

  16. Chen F, Yu Q, Qiao B, Dai S, Zhang Q. Influence of TiO2 on thermal stability and crystallization kinetics of tellurite glasses within TeO2–Bi2O3–Nb2O5 pseudo-ternary system. J Non Cryst Solids. 2014;404:32.

    Article  CAS  Google Scholar 

  17. Xu T, Chen F, Dai S, Shen X, Wang X, Nie Q, Liu C, Xu K, Heo J. Glass formation and third-order optical nonlinear properties within TeO2–Bi2O3–BaO pseudo-ternary system. J Non Cryst Solids. 2011;357:2219.

    Article  CAS  Google Scholar 

  18. El-Mallawany R, Abdel-Kader A, El-Hawary M, El-Khoshkhany N. Volume and thermal studies for tellurite glasses. J Mater Sci. 2010;45(4):871.

    Article  CAS  Google Scholar 

  19. Azianty S, Yahya AK, Halimah MK. Effects of Fe2O3 replacement of ZnO on elastic and structural properties of 80TeO2–(20–x)ZnO–x Fe2O3 tellurite glass system. J Non Cryst Solids. 2012;358(12–13):6.

    Google Scholar 

  20. Othman AA, Aly KA, Abousehly AM. Crystallization kinetics in new Sb14As29Se52Te5 amorphous glass. Solid State Commun. 2006;138:184.

    Article  CAS  Google Scholar 

  21. Aly KA, Othman AA, Abousehly AM. Effect of Te additions on the glass transition and crystallization kinetics of (Sb15As30Se55)100–xTex amorphous solids. J Alloys Compd. 2009;467:417.

    Article  CAS  Google Scholar 

  22. Afify N. Crystallization kinetics of overlapping phases in Se0.6Ge0.2Sb0.2 chalcogenide glass. J Non Cryst Solids. 1996;126:130.

    Article  Google Scholar 

  23. Afify N. A new method to study the crystallization or chemical reaction kinetics using thermal analysis technique. J Phys Chem Solids. 2008;69:1691.

    Article  CAS  Google Scholar 

  24. Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7:1103.

    Article  CAS  Google Scholar 

  25. Bansal NP, Doremus RH. Surface crystallization of a fluoride glass. J Am Ceram Soc. 1983;66:132.

    Article  Google Scholar 

  26. Vázquez J, López-Alemany PL, Villares P, Jiménez-Garay R. Alternative treatment of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.03Ge0.20Te0.77 alloy. Mater Lett. 1999;38:423.

    Article  Google Scholar 

  27. Abd Elnaeim AM, Aly KA, Afify N, Abousehlly AM. Glass transition and crystallization kinetics of Inx(Se0.75Te0.25)100−x chalcogenide glasses. J Alloys Compd. 2010;491:85.

    Article  CAS  Google Scholar 

  28. Aly KA, Saddeek YB, Dahshan A. Effect of WO3 on the glass transition and crystallization kinetics of borotellurite glasses. Philos Mag. 2010;90:4429.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental facilities from University of Al-Azhar University, Jeddah University, Menofia University, Port Said University, King Khalid University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Saddeek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, K.A., El-Mallawany, R., Saddeek, Y.B. et al. DTA and FTIR of 70TeO2–(25 − x)MnO2xV2O5–5Fe2O3 tellurite glass systems. J Therm Anal Calorim 131, 1857–1865 (2018). https://doi.org/10.1007/s10973-017-6499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6499-6

Keywords

Navigation