Skip to main content
Log in

Characterization and study on the thermal aging behavior of palladium–alumina catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of Pd/Al2O3 catalysts were prepared by incipient wetness impregnation method. Palladium loading was varied in a range of 0.125–4.0 mass%. The catalytic performance of the samples was tested in model reaction of CO oxidation at oxygen excess. Catalysts were characterized by temperature-programmed reduction (TPR), electron paramagnetic resonance, and UV–visible spectroscopy. Thermal aging of chosen samples was performed at 1000 °C. The thermal aging behavior was studied using TPR, X-ray diffraction analysis, transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). It was shown that palladium stabilized in the form of dispersed surface Pd2+ species when Pd loading is 0.5 mass% and below. Samples with higher loading preferentially contain nanosized Pd particles. Agglomeration of Pd species during thermal aging was found to take place starting from Pd concentration of 1.0 mass%. In some cases, size of Pd particles exceeds 150 nm, which is in about 40 times higher comparing with the initial samples. According to XPS data, degree of Pd2+-alumina interaction in the aged samples is also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hong UG, Hwang S, Seo JG, Yi J, Song IK. Hydrogenation of succinic acid to γ-butyrolactone over palladium catalyst supported on mesoporous alumina xerogel. Catal Lett. 2010;138:28–33.

    Article  CAS  Google Scholar 

  2. Vishwanathan V, Jayasri V, Mahaboob Basha P. Vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over alumina supported palladium catalyst—a kinetic study. React Kinet Catal Lett. 2007;91:291–8.

    Article  CAS  Google Scholar 

  3. Fukuyama T, Kippo T, Ryu I, Sagae T. Addition of allyl bromide to phenylacetylene catalyzed by palladium on alumina and its application to a continuous flow synthesis. Res Chem Intermed. 2009;35:1053.

    Article  CAS  Google Scholar 

  4. Arora S, Kapoor P, Singla ML. Catalytic studies of palladium nanoparticles immobilized on alumina synthesized by a simple physical precipitation method. React Kinet Mech Catal. 2010;99:157–65.

    CAS  Google Scholar 

  5. Berenblyum AS, Podoplelova TA, Shamsiev RS, Katsman EA, Danyushevsky VY. On the mechanism of catalytic conversion of fatty acids into hydrocarbons in the presence of palladium catalysts on alumina. Pet Chem. 2011;51:336–41.

    Article  CAS  Google Scholar 

  6. Gopinath R, Seshu Babu N, Vinod Kumar J, Lingaiah N, Sai Prasad PS. Influence of Pd precursor and method of preparation on hydrodechlorination activity of alumina supported palladium catalysts. Catal Lett. 2008;120:312–9.

    Article  CAS  Google Scholar 

  7. Thomazeau C, Cseri T, Bisson L, Aguilhon J, Minh DP, Boissière C, Durupthy O, Sanchez C. Nano design of alumina supported monometallic catalysts: a promising way to improve the selective hydrogenation of poly-unsaturated hydrocarbons. Top Catal. 2012;55:690–9.

    Article  CAS  Google Scholar 

  8. Cizmeci M, Musavi A, Tekin A, Kayahan M. Comparison of two palladium catalysts on different supports during hydrogenation. J Am Oil Chem Soc. 2006;83:1063–8.

    Article  CAS  Google Scholar 

  9. Karpiński Z, d’Itri JL. Hydrodechlorination of 1,1-dichlorotetrafluoroethane on supported palladium catalysts. A static-circulation reactor study. Catal Lett. 2001;77:135–40.

    Article  Google Scholar 

  10. Takht Ravanchi M, Fadaeerayeni S, Rahimi Fard M. The effect of calcination temperature on physicochemical properties of alumina as a support for acetylene selective hydrogenation catalyst. Res Chem Intermed. 2016;42:4797–811.

    Article  CAS  Google Scholar 

  11. Voskanyan PS. Effect of the nature of a support on the catalytic activity of a palladium catalyst in the synthesis of vinyl acetate by gas-phase ethylene acetoxylation. Catal Ind. 2013;5:90–7.

    Article  Google Scholar 

  12. Heck RM, Farauto RJ. Catalytic air pollution control: commercial technology. 2nd ed. New York: Wiley; 2002.

    Google Scholar 

  13. Zheng Q, Farrauto R, Deeba M. Part II: oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three way catalysts: the effects of fuel shutoff and attempted fuel rich regeneration. Catalysts. 2015;5:1797–814.

    Article  CAS  Google Scholar 

  14. Li M, Weng D, Wu X, Wan J, Wang B. Importance of re-oxidation of palladium by interaction with lanthana for propane combustion over Pd/Al2O3 catalyst. Catal Today. 2013;201:19–24.

    Article  CAS  Google Scholar 

  15. Rashidzadeh M, Peyrovi MH, Mondegarian R. Alumina-based supports for automotive palladium catalysts. React Kinet Catal Lett. 2000;69:115–22.

    Article  CAS  Google Scholar 

  16. Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y. Palladium–alumina cryogel with high thermal stability and CO oxidation activity. Catal Lett. 2012;142:95–9.

    Article  CAS  Google Scholar 

  17. Meusel I, Hoffmann J, Hartmann J, Heemeier M, Bäumer M, Libuda J, Freund H-J. The interaction of oxygen with alumina-supported palladium particles. Catal Lett. 2001;71:5–13.

    Article  CAS  Google Scholar 

  18. Chen L, Feng T, Wang P, Xiang Y, Ou B. Catalytic properties of Pd supported on hexaaluminate coated alumina in low temperature combustion of coal mine ventilation air methane. Kinet Catal. 2013;54:767–72.

    Article  CAS  Google Scholar 

  19. Demoulin O, Navez M, Ruiz P. The activation of a Pd/γ-alumina catalyst during methane combustion: investigation of the phenomenon and of potential causes. Catal Lett. 2005;103:149–53.

    Article  CAS  Google Scholar 

  20. Haack LP, Otto K. X-ray photoelectron spectroscopy of Pd/γ-alumina and Pd foil after catalytic methane oxidation. Catal Lett. 1995;34:31–40.

    Article  CAS  Google Scholar 

  21. Weng X, Yuan X, Li H, Li X, Chen M, Wan H. The study of the active surface for CO oxidation over supported Pd catalysts. Sci China Chem. 2015;58:174–9.

    Article  CAS  Google Scholar 

  22. Munakata N, Reinhard M. Palladium catalysis for the treatment of contaminated waters: a review. In: Smith JA, Burns SE, editors. Physicochemical groundwater remediation. New York: Kluwer Academic Publishers; 2002. p. 45–71.

  23. Perdigón-Melón JA, Auroux A, Bonnetot B. Calorimetric study of methane interaction with supported Pd catalysts. J Therm Anal Calorim. 2003;72:443–51.

    Article  Google Scholar 

  24. Twigg MV. Catalytic control of emissions from cars. Catal Today. 2011;163:33–41.

    Article  CAS  Google Scholar 

  25. Li H, Zhu Q, Li Y, Gong M, Chen Y, Wang J, Chen Y. Effects of ceria/zirconia ratio on properties of mixed CeO2–ZrO2–Al2O3 compound. J Rare Earth. 2010;28:79–83.

    Article  Google Scholar 

  26. Zheng T, He J, Zhao Y, Xia W, He J. Precious metal-support interaction in automotive exhaust catalysts. J Rare Earth. 2014;32:97–107.

    Article  CAS  Google Scholar 

  27. Satsuma A, Osaki K, Yanagihara M, Ohyama J, Shimizu K. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B-Environ. 2013;132–133:511–8.

    Article  Google Scholar 

  28. Li K, Wang X, Zhou Z, Wu X, Weng D. Oxygen storage capacity of Pt-, Pd-, Rh/CeO2-based oxide catalyst. J Rare Earth. 2007;25:6–10.

    Article  Google Scholar 

  29. Alikin EA, Vedyagin AA. High temperature interaction of rhodium with oxygen storage component in three-way catalysts. Top Catal. 2016;59:1033–8.

    Article  CAS  Google Scholar 

  30. Widmann D, Behm RJ. Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. Angew Chem Int Ed. 2011;50:10241–5.

    Article  CAS  Google Scholar 

  31. Fessi S, Ghorbel A. Preparation of alumina supported palladium catalysts by sol-gel method. J Sol-Gel Sci Technol. 2000;19:417–20.

    Article  CAS  Google Scholar 

  32. Zheng X, Chen X, Chen J, Zheng Y, Jiang L. Synthesis and application of highly dispersed ordered mesoporous silicon-doped Pd-alumina catalyst with high thermal stability. Chem Eng J. 2016;297:148–57.

    Article  CAS  Google Scholar 

  33. Wang Q, Li G, Zhao B, Zhou R. The effect of rare earth modification on ceria–zirconia solid solution and its application in Pd-only three-way catalyst. J Mol Catal A-Chem. 2011;339:52–60.

    Article  CAS  Google Scholar 

  34. Haneda M, Kintaichi Y, Nakamura I, Fujitani T, Hamada H. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide. J Catal. 2003;218:405–10.

    Article  CAS  Google Scholar 

  35. Soni KC, Krishna R, Chandra Shekar S, Singh B. Catalytic oxidation of carbon monoxide over supported palladium nanoparticles. Appl Nanosci. 2016;6:7–17.

    Article  CAS  Google Scholar 

  36. Légaré P, Finck F, Roche R, Maire G. Palladium particles growth on various aluminas. In: Chapon C, Gillet MF, Henry CR, editors. Small particles and inorganic clusters. Berlin: Springer; 1989. p. 19–22.

  37. Shubin VE, Shvetz VA, Savel’eva GA, Popova NM. EPR study of Pd+ ions in palladium–alumina catalysts and their interaction with carbon monoxide and oxygen. Kinet Catal. 1982;23:1153–60 (in Russian).

    CAS  Google Scholar 

  38. Sass AS, Shvetz VA, Savel’eva GA, Popova NM, Kazanskii VB. EPR study of palladium and platinum ions in Pd/MgO and Pt/MgO catalysts. Kinet Catal. 1983;24:1167–72 (in Russian).

    CAS  Google Scholar 

  39. Sass AS, Shvetz VA, Savel’eva GA, Popova NM, Kazanskii VB. Reactivity of O2 anion-radicals and mechanism of low-temperature oxidation of carbon monoxide on Ce/Al2O3 and Ce-Pd/Al2O3. Kinet Catal. 1985;26:924–31 (in Russian).

    CAS  Google Scholar 

  40. Chen X, Schwank JW, Fisher GB, Cheng Y, Jagner M, McCabe RW, Katz MB, Graham GW, Pan X. Nature of the two-step temperature-programmed decomposition of PdO supported on alumina. Appl Catal A-Gen. 2014;475:420–6.

    Article  CAS  Google Scholar 

  41. Cao Y, Ran R, Wu X, Zhao B, Wan J, Weng D. Comparative study of ageing condition effects on Pd/Ce0.5Zr0.5O2 and Pd/Al2O3 catalysts: catalytic activity, palladium nanoparticle structure and Pd-support interaction. Appl Catal A-Gen. 2013;457:52–61.

    Article  CAS  Google Scholar 

  42. Matam SK, Otal EH, Aguirre MH, Winkler A, Ulrich A, Rentsch D, Weidenkaff A, Ferri D. Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catal Today. 2012;184:237–44.

    Article  CAS  Google Scholar 

  43. Misono M. Recent progress in the practical applications of heteropolyacid and perovskite catalysts: catalytic technology for the sustainable society. Catal Today. 2009;144:285–91.

    Article  CAS  Google Scholar 

  44. Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS. Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B-Environ. 2011;103:397–403.

    Article  CAS  Google Scholar 

  45. Zhou Y, Wang Z, Liu C. Perspective on CO oxidation over Pd-based catalysts. Catal Sci Technol. 2015;5:69–81.

    Article  CAS  Google Scholar 

  46. Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV. Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top Catal. 2013;56:1008–14.

    Article  CAS  Google Scholar 

  47. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV. Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today. 2014;238:80–6.

    Article  CAS  Google Scholar 

  48. Boehm HP, Knözinger H. In: Anderson JR, Boudart M, editors. Catalysis-science and technology, vol. IV. Berlin: Springer; 1983. p. 39–209.

    Google Scholar 

  49. Powder Diffraction File. PDF-2/Release 2009: International Centre for Diffraction Data. USA.

  50. Vedyagin AA, Volodin AM, Kenzhin RM, Chesnokov VV, Mishakov IV. CO Oxidation over Pd/ZrO2 catalysts: role of support′s donor sites. Molecules. 2016;21:1289.

    Article  Google Scholar 

  51. Lieske H, Volter J. Palladium redispersion by spreading of palladium(II) oxide in oxygen treated palladium/alumina. J Phys Chem. 1985;89:1841–2.

    Article  CAS  Google Scholar 

  52. Lieske H, Lietz G, Hanke W, Völter J. Oberflächenchemie, Sintern und Redispergieren von Pd/Al2O3-Katalysatoren. Z Anorg Allg Chem. 1985;527:135–49.

    Article  CAS  Google Scholar 

  53. Juszczyk W, Karpinski Z, Ratajczykowa I, Stanasiuk Z, Zielinski J, Sheu LL, Sachtler WMH. Characterization of supported palladium catalysts: III. PdAl2O3. J Catal. 1989;120:68–77.

    Article  CAS  Google Scholar 

  54. Pawlonka J, Gac W, Greluk M, Słowik G. Application of microemulsion method for development of methanol steam reforming Pd/ZnO catalysts. J Therm Anal Calorim. 2016;125:1265–72.

    Article  CAS  Google Scholar 

  55. Sicolo S, Pacchioni G. Charging and stabilization of Pd atoms and clusters on an electron-rich MgO surface. Surf Sci. 2008;602:2801–7.

    Article  CAS  Google Scholar 

  56. Gaspar AB, Dieguez LC. Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl Catal A-Gen. 2000;201:241–51.

    Article  CAS  Google Scholar 

  57. Tessier D, Rakai A, Bozon-Verduraz F. Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J Chem Soc Faraday Trans. 1992;88:741–9.

    Article  CAS  Google Scholar 

  58. Ciuparu D, Bensalem A, Pfefferle L. Pd–Ce interactions and adsorption properties of palladium: CO and NO TPD studies over Pd–Ce/Al2O3 catalysts. Appl Catal B-Environ. 2000;26:241–55.

    Article  CAS  Google Scholar 

  59. Nilsson PO. Optical properties of PdO in the range of 0.5–5.4 eV. J Phys C Solid State Phys. 1979;12:1423–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Academy of Sciences and Federal Agency of Scientific Organizations (state-guaranteed order for BIC, Project Number 0303-2016-0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M. et al. Characterization and study on the thermal aging behavior of palladium–alumina catalysts. J Therm Anal Calorim 130, 1865–1874 (2017). https://doi.org/10.1007/s10973-017-6530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6530-y

Keywords

Navigation