Skip to main content
Log in

Isothermal and nonisothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Functionalized eggshell powder (NES) with nucleating surface of calcium phenylphosphonic acid (PPCa) for poly(l-lactide) (PLLA) was compounded with PLLA via melt blending to improve the cold crystallization process of PLLA. The cold crystallization behavior of the PLLA/NES composites was studied by differential scanning calorimetry. The isothermal cold crystallization rates have been enhanced obviously in the PLLA/NES composites than in the neat PLLA, indicative of the excellent nucleating effects of NES on PLLA. For the nonisothermal cold crystallization, the overall crystallization rate of PLLA increased with both increasing NES loadings and heating rate. It was found that the Avrami equation and the combined Ozawa–Avrami model could describe the experiment data successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9:63–84.

    Article  CAS  Google Scholar 

  2. Bogaert JC, Coszach P. Poly(lactic acids): a potential solution to plastic waste dilemma. Macromol Symp. 2000;153:287–303.

    Article  CAS  Google Scholar 

  3. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119:635–42.

    Article  CAS  Google Scholar 

  4. Li CL, Dou Q, Bai ZF, Lu QL. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122:407–17.

    Article  CAS  Google Scholar 

  5. Kawasaki N, Nakayama A, Maeda Y, Hayashi K, Yamamoto N, Aiba S. Synthesis of a new biodegradable copolyesteramide: poly(l-lactic acid-co-ε-caprolactam). Macromol Chem Phys. 1998;199:2445–51.

    CAS  Google Scholar 

  6. Calandrelli L, Calarco A, Laurienzo P, Malinconico M, Petillo O, Peluso G. Compatibilized polymer blends based on PDLLA and PCL for application in bioartificial liver. Biomacromol. 2008;9:1527–34.

    Article  CAS  Google Scholar 

  7. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam JD. Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials. 2003;24:2773–88.

    Article  CAS  Google Scholar 

  8. Chen GX, Kim HS, Shim AJ, Yoon JS. Role of epoxy groups on clay surface in the improvement of morphology of poly(l-lactide)/clay composites. Macromolecules. 2005;38:3738–44.

    Article  CAS  Google Scholar 

  9. Fernández MJ, Fernández DM, Aranburu I. Poly(l-lactic acid)/organically modified vermiculite nanocomposites prepared by melt compounding: effect of clay modification on microstructure and thermal properties. Eur Polym J. 2013;49:1257–67.

    Article  Google Scholar 

  10. Zhang DH, Kandadai MA, Cech J, Roth S, Curran SA. Poly(l-lactide) (PLLA)/multiwalledcarbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B. 2006;110:12910–5.

    Article  CAS  Google Scholar 

  11. Quan H, Zhang SJ, Qiao JL, Zhang YL. The electrical properties and crystallization of stereocomplex poly(lactic acid) filled with carbon nanotubes. Polymer. 2012;53:4547–52.

    Article  CAS  Google Scholar 

  12. Amirian M, Chakoli AN, Sui JH, Cai W. Enhanced mechanical and photoluminescence effect of poly(l-lactide) reinforced with functionalized multiwalled carbon nanotubes. Polym Bull. 2012;68:1747–63.

    Article  CAS  Google Scholar 

  13. Zhao YY, Qiu ZB, Yan S, Yang WT. Crystallization behavior of biodegradable poly(L-lactide)/multiwalled carbon nanotubes nanocom-posites from the amorphous state. Polym Eng Sci. 2011;51:1564–73.

    Article  CAS  Google Scholar 

  14. Chen L, Zhang JM. Nonisothermal cold crystallization of PLLA/CNTs composites. Polym Mater Sci Eng. 2012;28:64–7.

    Google Scholar 

  15. Fernández MD, Fernández MJ, Cobos M. Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci. 2016;51:3628–42.

    Article  Google Scholar 

  16. Gardella L, Basso A, Prato M, Monticelli O. PLA/POSS nanofibers: a novel system for the immobilization of metal nanoparticles. ACS Appl Mater Interfaces. 2013;5:7688–92.

    Article  CAS  Google Scholar 

  17. Yu J, Qiu ZB. Preparation and properties of biodegradable poly(l-lactide) /octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces. 2011;3:890–7.

    Article  CAS  Google Scholar 

  18. Yu J, Qiu ZB. Isothermal and nonisothermal cold crystallization behaviors of biodegradablepoly(L-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res. 2011;50:12579–86.

    Article  CAS  Google Scholar 

  19. Li Y, Xin SY, Bian YJ, Xu K, Han CY, Dong LS. The physical properties of poly(L-lactide) and functionalized eggshell powder composites. Int J Biol Macromol. 2016;85:63–73.

    Article  CAS  Google Scholar 

  20. Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a b-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;12:1469–80.

    Article  Google Scholar 

  21. Menyhárd A, Varga J, Molnár G. Comparison of different b-nucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625–30.

    Article  Google Scholar 

  22. Molnár J, Menyhárd A. Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim. 2016;124:1463–9.

    Article  Google Scholar 

  23. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  24. Ghosh S, Viana JC, Reis RL, Mano JF. Effect of processing conditions on morphology and mechanical properties of injection-molded poly(l-lactic acid). Polym Eng Sci. 2007;47:1141–7.

    Article  CAS  Google Scholar 

  25. Zhao HW, Bian YJ, Li Y, Han CY, Dong QL, Dong LS, Gao Y. Enhancing cold crystallization of poly(L-lactide) by a montmorillonitic substrate favoring nucleation. Thermochim Acta. 2014;588:47–56.

    Article  CAS  Google Scholar 

  26. Naffakh M, Marco C, Ellis G. Non-isothermal cold-crystallization behavior and kinetics of poly(l-lactic acid)/WS2 inorganic nanotube nanocomposites. Polymers. 2015;7:2175–89.

    Article  CAS  Google Scholar 

  27. Wu DF, Wu L, Wu LF, Xu B, Zhang YS, Zhang M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys. 2007;45:1100–13.

    Article  CAS  Google Scholar 

  28. Li Y, Han CY. Isothermal and nonisothermal cold crystallization behaviors of asymmetric poly(L-lactide)/poly(D-lactide) blends. Ind Eng Chem Res. 2012;51:15927–35.

    Article  CAS  Google Scholar 

  29. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  30. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  31. Kamal MR, Chu E. Isothermal and nonisothermal crystallization of polyethylene. Polym Eng Sci. 1983;23:27–31.

    Article  CAS  Google Scholar 

  32. Tsuji H, Tezuka Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid) s from the melt. Biomacromol. 2004;5:1181–6.

    Article  CAS  Google Scholar 

  33. Vasanthan N, Ly H, Ghosh S. Impact of nanoclay on isothermal cold crystallization kinetics and polymorphism of poly(l-lactic acid) nanocomposites. J Phys Chem B. 2011;115:9556–63.

    Article  CAS  Google Scholar 

  34. Khanna YP. A barometer of crystallization rates of polymeric materials. Polym Eng Sci. 1990;30:1615–9.

    Article  CAS  Google Scholar 

  35. Zhang R, Zheng H, Lou X, Ma D. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents. J Appl Polym Sci. 1994;51:51–6.

    Article  CAS  Google Scholar 

  36. Park JY, Kwon MH, Lee YS, Park OO. Effects of nucleating agent on nonisothermal crystallization of syndiotactic polystyrene. Korean J Chem Eng. 2000;17:262–5.

    Article  CAS  Google Scholar 

  37. Wu M, Yang GZ, Wang M, Wang WZ, Zhang WD, Feng JC, Liu TX. Nonisothermal crystallization kinetics of ZnO nanorod filled polyamide 11 composites. Mater Chem Phys. 2008;109:547–55.

    Article  CAS  Google Scholar 

  38. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  39. Chen EC, Wu TM. Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites. Polym Eng Sci. 2010;46:1309–17.

    Google Scholar 

  40. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  41. Cho J, Baratiana S, Kim J, Yeh F, Hsiao BS, Runt J. Crystallization and structure formation of poly(l-lactide-co-meso-lactide) random copolymers: a time-resolved wide- and small-angle X-ray scattering study. Polymer. 2003;44:711–7.

    Article  CAS  Google Scholar 

  42. Liu TX, Mo ZS, Wang SE, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  43. Li M, Hu DF, Wang YM, Shen CY. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.

    Article  CAS  Google Scholar 

  44. Wang YM, Shen CY, Li HM, Li Q, Chen JB. Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites. J Appl Polym Sci. 2004;91:308–14.

    Article  CAS  Google Scholar 

  45. Wang Y, Rodriguez-Perez MA, Reis LR, Mano JF. Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng. 2005;290:792–801.

    Article  CAS  Google Scholar 

  46. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass forming melts. I. Theory. J Non-Cryst Solids. 1993;162:1–12.

    Article  CAS  Google Scholar 

  47. Dobreva A, Gutzow IJ. Activity of substrates in the catalyzed nucleation of glass forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by program of Cooperation of Hubei Province and Chinese Academy of Sciences, Jilin Province Science and Technology Agency (20160204030GX), program of Changchun Municipal Scientific and Technologic Development (16SS16), and Innovation team project of Beijing Institute of Science and Technology (IG201703N). Part of this work is supported by Start up Foundation for Doctors of Jilin Jianzhu University (861107) and Training Program of Innovation and Entrepreneurship for Undergraduates of Jilin Jianzhu University (2017S1011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Han or Yancun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Han, C., Yu, Y. et al. Isothermal and nonisothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites. J Therm Anal Calorim 131, 2213–2223 (2018). https://doi.org/10.1007/s10973-017-6783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6783-5

Keywords

Navigation