Skip to main content
Log in

Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The employment of burning rate suppressants in the solid rocket propellant formulation is long known. Different research activities have been conducted to well understand the mechanism of suppression, but literature about the action of oxamide (OXA) and azodicarbonamide (ADA) on the thermal decomposition of composite propellant is still scarce. The focus of this study is on investigating the effect of burning rate suppressants on the thermal behavior and decomposition kinetics of composite solid propellants. Thermogravimetric analysis (TG) and differential thermal analysis have been used to identify the changes in the thermal and kinetic behaviors of coolant-based propellants. Two main decomposition stages were observed. It was found that OXA played an inhibition effect on both stages, whereas the ADA acts as a catalyst in the first stage and as coolant in the second one. The activation energy dependent on the conversion rate was estimated by two model-free integral methods: Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) based on the TG data obtained at different heating rates. The mechanism of action of coolants on the decomposition of solid propellants was confirmed by the kinetic investigation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. DeLuca LT, Shimada T, Sinditskii VP, Calabro M. Chemical rocket propulsion: a comprehensive survey of energetic materials. Berlin: Springer; 2017.

    Book  Google Scholar 

  2. Sutton GP, Biblarz O. Rocket propulsion elements. Hoboken: Wiley; 2017.

    Google Scholar 

  3. Kubota N. Propellants and explosives: thermochemical aspects of combustion. Hoboken: Wiley; 2015.

    Book  Google Scholar 

  4. Singh G. Recent advances on energetic materials. New York: Nova Scientific Publishers; 2015.

    Google Scholar 

  5. Mezroua A, Khimeche K, Lefebvre MH, Benziane M, Trache D. The influence of porosity of ammonium perchlorate (AP) on the thermomechanical and thermal properties of the AP/polyvinylchloride (PVC) composite propellants. J Therm Anal Calorim. 2014;116(1):279–86.

    Article  CAS  Google Scholar 

  6. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT. Recent advances in new oxidizers for solid rocket propulsion. Green Chem. 2017;19(20):4711–36. https://doi.org/10.1039/C7GC01928A.

    Article  CAS  Google Scholar 

  7. Dey A, Sikder AK, Talawar MB, Chottopadhyay S. Towards new directions in oxidizers/energetic fillers for composite propellants: an overview. Cent Eur J Energ Mater. 2015;12(2):377–99.

    CAS  Google Scholar 

  8. Trache D, Maggi F, Palmucci I, DeLuca LT, Khimeche K, Fassina M, et al. Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem. 2015. https://doi.org/10.1016/j.arabjc.2015.11.016.

    Article  Google Scholar 

  9. de la Fuente JL. Mesoporous copper oxide as a new combustion catalyst for composite propellants. J Propul Power. 2013;29(2):293–8.

    Article  CAS  Google Scholar 

  10. Klager K, Zimmerman G. Steady burning rate and affecting factors: experimental results. In: DeLuca L, Price E, Summerfield M, editors. Nonsteady burning and combustion stability of solid propellants. Washington: Progress in Astronautics and Aeronautics; 1992. p. 59–109.

    Google Scholar 

  11. Mirzajani V, Farhadi K, Pourmortazavi SM. Catalytic effect of lead oxide nano-and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim. 2018;131(2):937–48.

    Article  CAS  Google Scholar 

  12. Ghorpade VG, Dey A, Jawale LS, Kotbagi AM, Kumar A, Gupta M. Study of burn rate suppressants in AP-based composite propellants. Propell Explos Pyrot. 2010;35(1):53–6.

    CAS  Google Scholar 

  13. Ishitha K, Ramakrishna P. Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust Flame. 2014;161(10):2717–28.

    Article  CAS  Google Scholar 

  14. Parhi A, Mahesh V, Shaji A, Levin G, Abraham P, Srinivasan V. Challenges in the development of a slow burning solid rocket booster. Aerosp Sci Technol. 2015;43:437–44.

    Article  Google Scholar 

  15. Strunin VA, Fedorychev A, Gunin S, Klyuchnikov A, Milekhin YM, Manelis GB. Two-zone model for combustion of a composite solid propellant with a coolant. Combust Explos Shock Waves. 2010;46(3):315–24.

    Article  Google Scholar 

  16. Dey A, Ghorpade VG, Kumar A, Gupta M. Biuret: a potential burning rate suppressant in ammonium chlorate (VII) based composite propellants. Cent Eur J Energ Mater. 2014;11(1):3–13.

    CAS  Google Scholar 

  17. Jawalkar S, Kurva R, Sundaramoorthy N, Dombe G, Singh PP, Bhattacharya B. Studies on high burning rate composite propellant formulations using TATB as pressure index suppressant. Cent Eur J Energ Mater. 2012;9(3):237–49.

    Google Scholar 

  18. Williams GK, Palopoli SF, Brill TB. Thermal decomposition of energetic materials 65. Conversion of insensitive explosives (NTO, ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants. Combust Flame. 1994;98(3):197–204.

    Article  Google Scholar 

  19. Talawar MB, Nair JK, Pundalik SM, Satpute RS, Venugopalan S. Diaminofurazan (DAF): thermolysis and evaluation as ballistic modifier in double base propellant. J Hazard Mater. 2006;136(3):978–81.

    Article  CAS  PubMed  Google Scholar 

  20. Talawar MB, Makashir PS, Nair JK, Pundalik SM, Mukundan T, Asthana SN, et al. Studies on diaminoglyoxime (DAG): thermolysis and evaluation as ballistic modifier in double base propellant. J Hazard Mater. 2005;125(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  21. Stoner CE Jr, Brill TB. Thermal decomposition of energetic materials 46. The formation of melamine-like cyclic azines as a mechanism for ballistic modification of composite propellants by DCD, DAG, and DAF. Combust Flame. 1991;83(3):302–8.

    Article  CAS  Google Scholar 

  22. Zhang XD, Li JM, Yang RJ, Zhao XQ. Effect of azodicarbonamide on the properties of BAMO-THF/PSAN propellants. J Beijing Inst Tech. 2010;30(5):603–7.

    CAS  Google Scholar 

  23. Yan Q-L, Zhao F-Q, Kuo KK, Zhang X-H, Zeman S, DeLuca LT. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci. 2016;57:75–136.

    Article  Google Scholar 

  24. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  25. Vargeese AA, Muralidharan K, Krishnamurthy V. Kinetics of nano titanium dioxide catalyzed thermal decomposition of ammonium nitrate and ammonium nitrate-based composite solid propellant. Propell Explos Pyrot. 2015;40(2):260–6.

    Article  CAS  Google Scholar 

  26. Trache D, Khimeche K. Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater. 2013;37(4):328–36.

    Article  CAS  Google Scholar 

  27. Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2018;53(1):100–23. https://doi.org/10.1007/s10853-017-1474-y.

    Article  CAS  Google Scholar 

  28. Cho B-S, Kim J-S, Kang S-C, Noh S-T. Thermal decomposition kinetics of ferrocene modified poly (epichlorohydrin-co-2-(methoxymethyl) oxirane) based polyurethane networks. Thermochim Acta. 2013;556:18–22.

    Article  CAS  Google Scholar 

  29. Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75(2):551–7.

    Article  CAS  Google Scholar 

  30. Rocco J, Lima J, Frutuoso A, Iha K, Ionashiro M, Matos J, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77(3):803–13.

    Article  CAS  Google Scholar 

  31. Trache D. Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohydr Polym. 2016;151:535–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ma Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251–9.

    Article  CAS  Google Scholar 

  33. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109(3):1203–14.

    Article  CAS  Google Scholar 

  34. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.

    Article  CAS  Google Scholar 

  35. Vargeese AA. A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust Flame. 2016;165:354–60.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  37. Babar ZUD, Malik AQ. An investigation of thermal decomposition kinetics of nano zinc oxide catalyzed composite propellant. Combust Sci Technol. 2015;187(8):1295–315.

    Article  CAS  Google Scholar 

  38. Kohga M, Handa S. Thermal decomposition behaviors and burning characteristics of composite propellants prepared using combined ammonium perchlorate/ammonium nitrate particles. J Energ Mater. 2017. https://doi.org/10.1080/07370652.2017.1316794.

    Article  Google Scholar 

  39. Rodríguez-Pesina M, García-Domínguez J, García-Hernández F, Flores-Vélez LM, Domínguez O. The thermal decomposition of ammonium perchlorate-aluminum propellants in presence of metallic zinc particles. Mater Sci Appl. 2017;8(06):436–47.

    Google Scholar 

  40. Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, Jabbarzadeh Y, Javidan A. Effect of nanomaterials on thermal stability of 1, 3, 6, 8-tetranitro carbazole. Cent Eur J Energ Mater. 2017;14(1):201–16. https://doi.org/10.22211/cejem/65140.

    Article  Google Scholar 

  41. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim. 2016;124(2):935–41.

    Article  CAS  Google Scholar 

  42. Chatragadda K, Vargeese AA. Synergistically catalysed pyrolysis of hydroxyl terminated polybutadiene binder in composite propellants and burn rate enhancement by free-standing CuO nanoparticles. Combust Flame. 2017;182:28–35.

    Article  CAS  Google Scholar 

  43. Chaturvedi S, Dave PN, Patel NN. Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Appl Nanosci. 2015;5(1):93–8.

    Article  CAS  Google Scholar 

  44. Sun Y-L, Li S-F, Ding D-H. Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim. 2006;86(2):497–503.

    Article  CAS  Google Scholar 

  45. Yan Q-L, Zeman S, Elbeih A, Song Z-W, Málek J. The effect of crystal structure on the thermal reactivity of CL-20 and its C4 bonded explosives (I): thermodynamic properties and decomposition kinetics. J Therm Anal Calorim. 2013;112(2):823–36.

    Article  CAS  Google Scholar 

  46. Liu S-E, Zhou W-L, Yan Q-L, Qi X-F, An T, Perez-Maqueda L, et al. New findings on thermal degradation properties of fluoropolymers. J Therm Anal Calorim. 2017;128(2):675–85.

    Article  CAS  Google Scholar 

  47. Dubey R, Chawla M, Siril PF, Singh G. Bi-metallic nanocomposites of Mn with very high catalytic activity for burning rate enhancement of composite solid propellants. Thermochim Acta. 2013;572:30–8.

    Article  CAS  Google Scholar 

  48. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.

    Article  CAS  Google Scholar 

  49. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S. Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv. 2015;5(3):1950–60.

    Article  CAS  Google Scholar 

  50. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  51. Coats A, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  52. Trache D. Comments on “Effect of hydrolysed cellulose nanowhiskers on properties of montmorillonite/polylactic acid nanocomposites” By Reza Arjmandi et al. Int J Biol Macromolec. 2016;88:497–8.

    Article  CAS  Google Scholar 

  53. Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11(3):445–7.

    Article  Google Scholar 

  54. Wu Z, Yang W, Tian X, Yang B. Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass. Energy Convers Manag. 2017;135:212–25.

    Article  CAS  Google Scholar 

  55. Sell T, Vyazovkin S, Wight CA. Thermal decomposition kinetics of PBAN-binder and composite solid rocket propellants. Combust Flame. 1999;119(1):174–81.

    Article  CAS  Google Scholar 

  56. Y-h Wang, L-l Liu, L-y Xiao, Z-x Wang. Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer. J Therm Anal Calorim. 2015;119(3):1673–8.

    Article  CAS  Google Scholar 

  57. Zhang W, Li P, Xu H, Sun R, Qing P, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Al (OH) 3· Cr (OH) 3 nanoparticles. J Hazard Mater. 2014;268:273–80.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu Y-L, Huang H, Ren H, Jiao Q-J. Effects of aluminum nanoparticles on thermal decomposition of ammonium perchlorate. J Korean Chem Soc. 2013;57:109–14.

    Article  CAS  Google Scholar 

  59. Trunov MA, Umbrajkar SM, Schoenitz M, Mang JT, Dreizin EL. Oxidation and melting of aluminum nanopowders. J Phys Chem B. 2006;110(26):13094–9.

    Article  CAS  PubMed  Google Scholar 

  60. El-Basuony SA, Sadek MA, Wafy TZ, Mostafa HE. Thermokinetic studies of polyurethanes based on hydroxyl-terminated polybutadiene prepolymer. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6552-5.

    Article  Google Scholar 

  61. Patil PR, Krishnamurthy VE, Joshi SS. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propell Explos Pyrot. 2006;31(6):442–6.

    Article  CAS  Google Scholar 

  62. Gaurav M, Ramakrishna P. Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust Flame. 2016;166:203–15.

    Article  CAS  Google Scholar 

  63. Hanson-Parr DM, Parr TP. Thermal properties measurements of solid rocket propellant oxidizers and binder materials as a function of temperature. J Energ Mater. 1999;17(1):1–48.

    Article  CAS  Google Scholar 

  64. Jiang L, Yuan X, Li H, Xiao Z, Liang J, Wang H, et al. Pyrolysis and combustion kinetics of sludge–camphor pellet thermal decomposition using thermogravimetric analysis. Energy Convers Manage. 2015;106:282–9.

    Article  CAS  Google Scholar 

  65. Lee I. Thermal response of AP and aluminized AP/HTPB-based propellants with varying composition. In: 35th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit 1999; Los Angeles, California.

  66. Celina M, Minier L, Assink R. Development and application of tools to characterize the oxidative degradation of AP/HTPB/Al propellants in a propellant reliability study. Thermochim Acta. 2002;384(1):343–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Stefano Dossi, Dr. Marco Fassina and Mr. Giovani Colombo, SPLab, Department of Aerospace Science and Technology, Politecnico di Milano for the preparation of some propellant samples and for the commissioning of the TG/DTA apparatus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djalal Trache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trache, D., Maggi, F., Palmucci, I. et al. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim 132, 1601–1615 (2018). https://doi.org/10.1007/s10973-018-7160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7160-8

Keywords

Navigation