Skip to main content
Log in

Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites

Effects of nanoparticles interface and polymer structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New polypyrrole (PPy)-derived polymer/ZrO2 nanocomposite materials are prepared by single-step oxidative polymerization of pyrrole (Py) and/or N-methylpyrrole (mPy) in the presence of HCl-functionalized ZrO2 nanoparticles and ammonium persulfate. The physicochemical features of the PPy–ZrO2, poly(Py-co-mPy)–ZrO2 and PmPy–ZrO2 hybrids were analyzed by XPS, FTIR, XRD and UV–Vis techniques. To explore the advantages of these nanocomposites for potential applications, their thermal, conductive and electrochemical properties were investigated. The characterization reveals that a chemical bonding, based on electrostatic interactions, is established between the polymers and the ZrO2 nanoparticles. Interestingly, it is found that the growth of polymer on the surface of Cl-functionalized ZrO2 becomes more significant as the Py moiety (–NH– species) content in the polymer increases. The thermal stability and conductivity of the polymers increase by hybridization with the ZrO2 nanoparticles. This is assigned to the affective interaction of the polymers with the ZrO2 nanoparticles. Particularly, the resulting nanocomposites keep high conductivities, ranging between 0.323 and 0.929 S cm−1. Finally, voltammetric characterization shows that the PPy–ZrO2 and poly(Py-co-mPy)–ZrO2 nanocomposites are electroactive, thus demonstrating their capability for electrochemical applications. These results highlight the great influence of the nanoparticle interface and the nature of monomer on the nanocomposite formation and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gupta K, Jana PC, Meikap AK. Optical and electrical transport properties of polyaniline–silver nanocomposite. Synth Met. 2010;160:1566–73.

    Article  CAS  Google Scholar 

  2. Inzelt G. Conducting polymers: a new era in electrochemistry. 2nd ed. New York: Springer; 2012. p. 245–76.

    Book  Google Scholar 

  3. Ouyang J. Secondary doping: methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays. 2013;34:423–36.

    Article  CAS  Google Scholar 

  4. Nour FA. Organic nanoparticles as promising flame retardant materials for thermoplastic polymers. J Therm Anal Calorim. 2017;127:2273–82.

    Article  CAS  Google Scholar 

  5. Ferooze AR, Kowsar M. Comparative effect of chelated and non-chelated metal complexes of Ni(II), Zn(II), Tb(III), Fe(II) and Fe(III) on the thermal stability of polyaniline composites. J Therm Anal Calorim. 2017;130:1759–67.

    Article  CAS  Google Scholar 

  6. Peukert W, Schwarzer HC, Gotzinger M, Gunther L, Stenger F. Control of particle interfaces—the critical issue in nanoparticle technology. Adv Powder Technol. 2003;14:411–26.

    Article  CAS  Google Scholar 

  7. Radja I, Djelad H, Morallon E, Benyoucef A. Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met. 2015;202:25–32.

    Article  CAS  Google Scholar 

  8. Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Fréchet JM. Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 2007;7:1869–77.

    Article  CAS  PubMed  Google Scholar 

  9. Labuayai S, Promarak V, Maensiri S. Synthesis and optical properties of nanocrystalline ZnO powders prepared by a direct thermal decomposition route. Appl Phys A. 2009;94:755–61.

    Article  CAS  Google Scholar 

  10. Suwanboon S, Amornpitoksuk P, Bangrak P, Randorn C. Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods. Ceram Int. 2014;40:975–83.

    Article  CAS  Google Scholar 

  11. Tabchouche A, Ourari A, Zoubeidi N, Zerrouki D. Electrochemistry preparation of electrodes based on polypyrrole and polymethylpyrrole/manganese dioxide particles. Energy Procedia. 2013;36:1009–17.

    Article  CAS  Google Scholar 

  12. Chen D, Shen J, Jiang X, Mu Y, Ma D, Han W, Sun X, Li J, Wang L. Fabrication of polypyrrole/beta-MnO2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochim Acta. 2017;244:119–28.

    Article  CAS  Google Scholar 

  13. Yin Z, Ding Y, Zheng Q, Guan L. CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochem Commun. 2012;20:40–3.

    Article  CAS  Google Scholar 

  14. Li Y, Jiao M, Yang M. In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids. Sens Actuators B Chem. 2017;238:596–604.

    Article  CAS  Google Scholar 

  15. Ghaemi N, Daraei P. Enhancement in copper ion removal by PPy–Al2O3 polymeric nanocomposite membrane. J Ind Eng Chem. 2016;40:26–33.

    Article  CAS  Google Scholar 

  16. Cheng X, Ding S, Guo J, Zhang C, Guo Z, Shao L. In-situ interfacial formation of TiO2/polypyrrole selective layer for improving the separation efficiency towards molecular separation. J Membr Sci. 2017;536:19–27.

    Article  CAS  Google Scholar 

  17. Singh SK, Shukla RK. Optical and photoconductivity properties of pure polypyrrole and titanium dioxide-doped polypyrrole nanocomposites. Mater Sci Semicond Process. 2015;31:45–250.

    Google Scholar 

  18. Kumar AM, Rajendran N. Influence of zirconia nanoparticles on the surface and electrochemical behaviour of polypyrrole nanocomposite coated 316L SS in simulated body fluid. Surf Coat Technol. 2012;213:155–66.

    Article  CAS  Google Scholar 

  19. Alves APP, Koizumi R, Samanta A, Machado LD, Singh AK, Galvao DS, Silva GG, Tiwary CS, Ajayan PM. One-step electrodeposited 3D-ternary composite of zirconia nanoparticles, ZrGO and polypyrrole with enhanced supercapacitor performance. Nano Energy. 2017;31:225–32.

    Article  CAS  Google Scholar 

  20. Chaluvaraju BV, Sangappa KG, Uma V, Murugendrappa MV. Humidity sensing study of polypyrrole/zirconium oxide composites. Adv Polym Sci Technol Int J. 2014;41:69–76.

    Google Scholar 

  21. Baig U, Gonda MA. Facile synthesis of polypyrrole-zirconium(IV) oxide-ethanolamine anion exchange nanocomposite and its utilization in membrane electrode development for sensing and quantitative detection of As(III) in water. Nanosci Nanotechnol Lett. 2016;8:1–9.

    Article  Google Scholar 

  22. Wu J, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J Power Sources. 2008;181:172–6.

    Article  CAS  Google Scholar 

  23. Sultan A, Ahmad S, Mohammad F. Synthesis, characterization and electrical properties of polypyrrole/zirconia nanocomposite and its application as ethene gas sensor. Polym Polym Compos. 2017;25(9):695–704.

    CAS  Google Scholar 

  24. Zong L, Tian Z, Li Y, Lu F. Promotional effects of PPy-modified ZrO2 composite as support and microemulsion medium for selective hydrogenation of cinnamaldehyde over supported Ru catalyst. Indian J Chem. 2015;54:309–15.

    Google Scholar 

  25. Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci. 1998;23:1443–84.

    Article  CAS  Google Scholar 

  26. Chouli F, Radja I, Morallon E, Benyoucef A. A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos. 2017;38:254–60.

    Article  CAS  Google Scholar 

  27. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E. PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization and electrochemical studies. Colloid Polym Sci. 2016;294:1877–85.

    Article  CAS  Google Scholar 

  28. Bekhoukh A, Zehhaf A, Benyoucef A, Bousalem S, Belbachir M. Nanoparticles mass effect of ZnO on the properties of poly(4-chloroaniline)/zinc oxide nanocomposites. J Inorg Organomet Polym Mater. 2017;27:13–20.

    Article  CAS  Google Scholar 

  29. Toumi I, Benyoucef A, Yahiaoui A, Quijada C, Morallon E. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite. J Alloys Compd. 2013;551:212–8.

    Article  CAS  Google Scholar 

  30. Tsunekawa S, Asami K, Ito S, Yashima M, Sugimoto T. XPS study of the phase transition in pure zirconium oxide nanocrystallites. Appl Surf Sci. 2005;252:1651–6.

    Article  CAS  Google Scholar 

  31. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C. 2011;115:17009–19.

    Article  CAS  Google Scholar 

  32. Morozan A, Jégou P, Campidelli S, Palacin S, Jousselme B. Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem Commun. 2012;48:4627–9.

    Article  CAS  Google Scholar 

  33. Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab. 2015;120:392–401.

    Article  CAS  Google Scholar 

  34. Domínguez JMG, Castell P, Gascón SB, Casaos AA, Pascual AMD, Fatou MAG, Benito AM, Maser WK, Martínez MT. Covalent functionalization of MWCNTs with poly(p-phenylene sulphide) oligomers: a route to the efficient integration through a chemical approach. J Mater Chem. 2012;22:21285.

    Article  CAS  Google Scholar 

  35. Ma Z, Guo C, Yin Y, Zhang Y, Wu H, Chen C. The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium. Electrochim Acta. 2015;160:357–62.

    Article  CAS  Google Scholar 

  36. Suzer S, Birer O, Sevil UA, Guven O. XPS investigations on conducting polymers. Turk J Chem. 1998;22:59–65.

    CAS  Google Scholar 

  37. Catauro M, Bollino F, Papale F, Mozzati MC, Ferrara C, Mustarelli P. ZrO2/PEG hybrid nanocomposites synthesized via sol–gel: characterization and evaluation of the magnetic properties. J Non-Cryst Solids. 2015;413:1–7.

    Article  CAS  Google Scholar 

  38. Zare EN, Lakouraj MM, Mohseni M. Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met. 2014;187:9–16.

    Article  CAS  Google Scholar 

  39. Donga Z, Zhanga X, Huang Q, Zhang J, Zuo X, Li W, Yuan G, Li X. Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders. Ceram Int. 2015;41:7359–65.

    Article  CAS  Google Scholar 

  40. Chen A, Kamata K, Nakagawa M, Iyoda T, Wang HH, Li X. Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). J Phys Chem B. 2005;109:18283–8.

    Article  CAS  PubMed  Google Scholar 

  41. Apriany K, Permadani I, Syarif DG, Soepriyanto S, Rahmawati F. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells. Mater Sci Eng. 2016;107:012023.

    Google Scholar 

  42. Kumar A, Rajdev D, Douglass DL. Effect of oxide defect structure on the electrical properties of ZrO2. J Am Ceram Soc. 1972;55:439–45.

    Article  CAS  Google Scholar 

  43. Martinez JG, Otero TF. Structural electrochemistry. Chronopotentiometric responses from rising compacted polypyrrole electrodes: experiments and model. RSC Adv. 2014;4:29139–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the directorate General of Scientific Research and Technological Development (DGRSDT) (Algeria). Financial support from the Spanish Ministerio de Economía y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-2014-20012) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benyoucef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamani, K., Berenguer, R., Benyoucef, A. et al. Preparation of polypyrrole (PPy)-derived polymer/ZrO2 nanocomposites. J Therm Anal Calorim 135, 2089–2100 (2019). https://doi.org/10.1007/s10973-018-7347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7347-z

Keywords

Navigation