Skip to main content
Log in

Non-isothermal crystallization kinetics and degradation kinetics studies on barium thioglycolate end-capped poly(ε-caprolactone)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The poly(ε-caprolactone) (PCL) was synthesized by ring-opening polymerization at 160 °C under nitrogen atmosphere for 2 h by bulk polymerization method in the presence of barium thioglycolate (Ba-TG) as an initiator and stannous octoate as a catalyst. The monomer-to-initiator ratio was maintained at 400. The Ba-TG end-capped PCL was characterized by various analytical tools like FTIR spectroscopy, NMR spectroscopy, AFM, DSC, TGA, POM and HRTEM. The non-isothermal crystallization kinetic study was executed with the help of DSC in order to determine the rate at which nucleation formation and spherulitic growth take place. The thermal degradation kinetic studies were performed with the help of TGA to know the degradation rate as well as energy of activation (Ea) using different non-isothermal kinetic models. The main aim of the present investigation is to determine the role of chain end-capping agent (Ba-TG) on the crystallization and degradation process of PCL. It was found that the Ba-TG induced the 3D spherulitic crystal growth of PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salgado CL, Sanchez EMS, Zavaglia CAC, Granja PL. Bio-compatibility and bio-degradability of poly(caprolactone)-sebacic acid blended gels. J Biomed Mat Res Part A. 2012;100A:243–51.

    Article  CAS  Google Scholar 

  2. Zairs S, Brown TD, Reichert JC, Berner A. Poly(caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering. Materials. 2016;9:232–46.

    Article  CAS  Google Scholar 

  3. Jiang L, Lou L, Sun W, Xu L, Shen Z. Ring opening polymerization of caprolactone with a divalent samarium bis(phosphido) complex. J Appl Polym Sci. 2005;98:1558–64.

    Article  CAS  Google Scholar 

  4. Dobizyski P, Li S, Kaspersczyk J, Bero M, Gasc F, Vert M. Structure-property relationship of copolymer obtained by ring opening polymerization of glycolide and caprolactone, part-1. Synthesis and characterization. Biomacromolecules. 2005;6:483–8.

    Article  CAS  Google Scholar 

  5. Contreras JM, Medina D, Carrasquero FL, Contreras RB. Ring opening polymerization of caprolactone initiated by samarium acetae. J Polym Res. 2013;20:244–50.

    Article  CAS  Google Scholar 

  6. Monelave M, Contreras JM, Laredo E, Carrasquero FL. Ring opening polymerization of (R, S)-β-butyrolactone and caprolactone using sodiumhydride as initiator. Express Polym Lett. 2010;7:431–41.

    Google Scholar 

  7. Sivabalan A, Meenarathi B, Palanikumar S, Anbarasan R. Synthesis and characterization of poly(caprolactone): a comparative study. Int J Sci Res Eng Technol. 2014;1:9–14.

    Google Scholar 

  8. Cayuela J, Legare VB, Cassagnou P, Michel A. Ring opening polymerization of caproalctone initiated with titanium n-propoxide or titanium phenoxide. Macromolecules. 2006;39:1338–46.

    Article  CAS  Google Scholar 

  9. Kannammal L, Palanikumar S, Meenarathi B, Anbarasan R. Synthesis, characterization and band gap study of calcium mercaptosuccinate. J Thermoplast Compos Mater. 2017;30:1056–68.

    Article  CAS  Google Scholar 

  10. Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R. Synthesis, characterization and drug release activity of poly(caprolactone)/Fe3O4 nanocomposites. Nanocomposites. 2016;2:98–107.

    Article  CAS  Google Scholar 

  11. Rajkumar B, Dhanalakshmi T, Meenarathi B, Anbarasan R. Synthesis and characterization of novel fluorescent amphiphilic diblock copolymers. Polym Bull. 2016;73:2147–63.

    Article  CAS  Google Scholar 

  12. Jeyapriya M, Meenarathi B, Anbarasan R. Synthesis, characterization, catalytic activity and splinting activity of nano Ag end capped l-glutathione bridged amphiphilic diblock copolymer. J Appl Polym Sci. 2016;133:1–11.

    Article  CAS  Google Scholar 

  13. Murugesan A, Meenarathi B, Kannammal L, Anbarasan R. Synthesis, characterization and application of poly(sulfanilicacid) based triblock copolymer. Adv Polym Technol. 2016;26:1–9.

    Google Scholar 

  14. Kailash S, Meenarathi B, Palanikumar S, Anbarasan R. Synthesis, characterization, drug delivery and splinting activity of folic acid bridged poly(caprolactone-co-tetrahydrofuran). Int J Polym Mater Polym Biomater. 2015;64:620–7.

    Article  CAS  Google Scholar 

  15. Sowkath A, Ahmad M, Anbarasan R. Ring opening polymerization ε-caprolactone by Schiff base metal complexes. Int J Chem Biol Sci. 2014;1:1–12.

    Google Scholar 

  16. Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Compos Sci Technol. 2007;67:2165–74.

    Article  CAS  Google Scholar 

  17. Nanaki SG, Papageorgiou GZ, Bikiaris DN. Crystallization of novel poly(ε-caprolactone)-block-poly(propyleneadipate) copolymers. J Therm Anal Calorim. 2012;108:633–45.

    Article  CAS  Google Scholar 

  18. Luduen L, Vazquez A, Alvarez V. Viscoelastic behavior of poly(caprolactone)/clay nanocomposites. J Compos Mater. 2012;46:677–89.

    Article  CAS  Google Scholar 

  19. Gopinathan J, Pillai M, Elakkiy V, Selvakumar R, Bhattacharyya A. Carbon nanofillers incorporated electrically conducting poly(caprolactone) nanocomposite films and their biocompatibility studies using MG-63 cell line. Polym Bull. 2016;73:1037–53.

    Article  CAS  Google Scholar 

  20. Wng XL, Huang FY, Zhou Y, Wang YZ. Non-isothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Phys. 2009;48:710–22.

    Article  CAS  Google Scholar 

  21. Saeed K, Park SY. Preparation and properties of poly(caprolactone)/poly(butylenes terephthalate) blend, Iran. J Chem Eng. 2010;29:77–81.

    Google Scholar 

  22. Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S. Effects of bulky end groups on the crystallization kinetics of poly(caprolactone) homopolymers confined in a cylindrical nanodomain. Macromolecules. 2017;50:7202–10.

    Article  CAS  Google Scholar 

  23. Huo H, Yang Y, Zhao X. Effects of lithium perchlorate on the nucleation and crystallization of PEO and PCL in the PEO–PCL–lithium perchlorate ternary blend. CrystEngComm. 2014;16:1351–8.

    Article  CAS  Google Scholar 

  24. Jenkins MJ, Harrison KL. The effect of molecular weight on the crystallization kinetics of poly(caprolactone). Polym Adv Technol. 2006;17:474–8.

    Article  CAS  Google Scholar 

  25. Marquez Y, Franco L, Puiggali J. Thermal degradation studies of poly(trimetylene carbonate) blends with either polylactide or poly(caprolactone). Thermochim Acta. 2012;550:65–75.

    Article  CAS  Google Scholar 

  26. Peng H, Han Y, Liu T, He C. Morphology and thermal degradation behaviour of highly exfoliated Co–Al layered double hydroxide/poly(caprolactone) nanocomposites prepared by simple solution intercalation. Thermochim Acta. 2010;502:1–7.

    Article  CAS  Google Scholar 

  27. Nanaki SG, Chuissafis K, Bikiaris DN. Effect of molar ratio on the mass loss kinetics of poly(caprolactone-co-propyleneadipate) copolymers. Thermochim Acta. 2011;517:45–52.

    Article  CAS  Google Scholar 

  28. Carmoona VB, Compos AD, Marcocini JM, Mattoso C. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Thermal Anal Calorim. 2014;115:153–60.

    Article  CAS  Google Scholar 

  29. Joshi P, Madras G. Degradation of poly(caprolactone) in supercritical fluids. Polym Degrad Stab. 2008;93:1901–8.

    Article  CAS  Google Scholar 

  30. Maiti ASN, Jacob J. Non-isothermal crystallization and micro-structural behaviour of poly(caprolactone) and tapioca starch based bio-composites. Int J Polym Anal Charact. 2017;22:222–36.

    Article  CAS  Google Scholar 

  31. Jancirani A, Kohila V, Meenarathi B, Yellilarasi A, Anbarasan R. Synthesis, characterization and non-isothermal degradation kinetics of poly(monoethyleneglycol dimethacrylate-co-4-aminobenzoate). Bull Mater Sci. 2016;39:1725–33.

    Article  CAS  Google Scholar 

  32. Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Bikiaris D. Biocompatible nanobiogels reinforced poly(caprolactone) composites synthesized via insitu ring opening polymerization. Polymers. 2018;10:381–407.

    Article  CAS  PubMed Central  Google Scholar 

  33. Roumeli E, Papageorgiou DG, Tsanaktsis V, Terzopoulou Z, Chrissafis K, Bikiaris DN. Amino functionalized multiwalled carbon nanotube lead to successful ring opening polymerization of poly(caprolactone): enhanced interfacial bonding and optimized mechanical properties. Appl Mater Interfaces. 2015;7:11683–94.

    Article  CAS  Google Scholar 

  34. Terzopoulou Z, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN. Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of ply(caproalctone). J Mater Sci. 2018;53:6519–41.

    Article  CAS  Google Scholar 

  35. Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN. Non-isothermal crystallization kinetics of insitu prepared poly(caprolactone)/surface treated SiO2 nanocomposites. Macromol Chem Phys. 2007;208:364–76.

    Article  CAS  Google Scholar 

  36. Lin L, Xu Y, Qin J, Wang S, Xiao M, Meng Y. Correlation between crystallization behavior and mechanical properties of biodegradable poly(caprolactone-co-cyclohexene carbonate). Polym Plast Technol Eng. 2017;42:1–12.

    Google Scholar 

  37. Nerantzaki M, Papageorgiou GZ, Bikiaris DN. Effect of nanofillers type on the thermal properties and enzymatic degradation of poly(caprolactone). Polym Degrad Stab. 2014;108:257–68.

    Article  CAS  Google Scholar 

  38. Papageorgiou DG, Roumeli E, Terzopoulou Z, Tsanaktsis V, Chrissafis K, Bikiaris DN. Poly(caproalctone)/MWCNT nanocomposites prepared by insitu ring opening polymerization: decomposition property using thermogravimetric analysis and analytical pyrolysis gas chromatography/mass spectroscopy. J Anal Appl Pyrolysis. 2015;115:125–31.

    Article  CAS  Google Scholar 

  39. Terzopoulou Z, Bikiaris DN, Potsi G, Gournis D, Papageorgiou GZ, Rudolf P. Mechanical, thermal and decomposition behaviour of poly(caprolactone) nanocomposites with clay supported carbon nanotube hybrids. Thermochim Acta. 2016;642:67–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo-Lun Tung or R. Anbarasan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalakshmi, S., Alagesan, T., Parthasarathy, V. et al. Non-isothermal crystallization kinetics and degradation kinetics studies on barium thioglycolate end-capped poly(ε-caprolactone). J Therm Anal Calorim 135, 3129–3140 (2019). https://doi.org/10.1007/s10973-018-7514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7514-2

Keywords

Navigation