Skip to main content
Log in

Investigation on the combustion efficiency and residual of nitrocellulose–alcohol humectant mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To have an insight into the fire properties of nitrocellulose–isopropanol and –ethanol mixtures, the experimental data in previous work are further extracted and analyzed carefully. Generally, the effective heats of combustion of the two samples characterized by both the peak and mean heat release rates decrease with the increasing external irradiance levels. The combustion efficiencies characterized by the ratio of carbon dioxide (CO2) to carbon monoxide (CO), regardless of the maximum and mean values, also show the similar decreasing tendency, exhibiting a lower combustion efficiency at elevated external radiation. With respect to the X-ray photoelectron spectroscopy results, the two nitrocellulose–alcohol mixtures appear to yield the similar species of combustion residuals, but slightly different in the atomic concentrations, which may be due to the differences in the alcohol humectant and nitrogen content in nitrocellulose substrate. These findings are expected to provide further understanding of fire properties of nitrocellulose–alcohol mixtures and help with fire investigation of such type of fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akhavan J. The chemistry of explosives, chapter 2. London: Royal Society of Chemistry; 2004. p. 21–48.

    Book  Google Scholar 

  2. Tian Y, Guo K, Bian X, Wang T, Chen S, Sun J. Durable and room-temperature curable superhydrophobic composite coating on nitrocellulose lacquer. Surf Coat Technol. 2017;328:444–50.

    Article  CAS  Google Scholar 

  3. Zhang X, Hikal WM, Zhang Y, Bhattacharia SK, Li L, Panditrao S, Wang S, Weeks BL. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett. 2013;102(14):141905.

    Article  CAS  Google Scholar 

  4. Zhang X, Weeks BL. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater. 2014;268:224–8.

    Article  CAS  PubMed  Google Scholar 

  5. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2–3):1141–4.

    Article  CAS  PubMed  Google Scholar 

  6. Luo Q, Ren T, Shen H, Zhang J, Liang D. The thermal properties of nitrocellulose: from thermal decomposition to thermal explosion. Combust Sci Technol. 2018;190(4):579–90.

    Article  CAS  Google Scholar 

  7. Sun Y, Ren H, Jiao Q. Comparison of thermal behaviors and decomposition kinetics of NEPE propellant before and after storage. J Therm Anal Calorim. 2018;131(1):101–11.

    Article  CAS  Google Scholar 

  8. Mirzajani V, Farhadi K, Pourmortazavi SM. Catalytic effect of lead oxide nano- and microparticles on thermal decomposition kinetics of energetic compositions containing TEGDN/NC/DAG. J Therm Anal Calorim. 2018;131(2):937–48.

    Article  CAS  Google Scholar 

  9. Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, Wang J. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7410-9.

    Article  Google Scholar 

  10. Katoh K, Higashi E, Nakano K, Ito S, Wada Y, Kasamatsu J, Miya H, Yamamoto M, Wada Y. Thermal behavior of nitrocellulose with inorganic salts and their mechanistic action. Propellants Explos Pyrotech. 2010;35(5):461–7.

    Article  CAS  Google Scholar 

  11. Mahajan R, Makashir P, Agrawal J. Combustion behaviour of nitrocellulose and its complexes with copper oxide. Hot stage microscopic studie. J Therm Anal Calorim. 2001;65(3):935–42.

    Article  CAS  Google Scholar 

  12. Makashir PS, Mahajan RR, Agrawal JP. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45(3):501–9.

    Article  CAS  Google Scholar 

  13. Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7235-6.

    Article  Google Scholar 

  14. He Y , He Y, Liu J, Li P, Chen M, Wei R, Wang J. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12.

    Article  CAS  PubMed  Google Scholar 

  15. Wei R, He Y, Liu J, He Y, Mi W, Yuen R, Wang J. Experimental study on the fire properties of nitrocellulose with different structures. Materials. 2017;10(3):316.

    Article  CAS  PubMed Central  Google Scholar 

  16. Enright PA, Fleischmann CM. Uncertainty of heat release rate calculation of the ISO5660-1 cone calorimeter standard test method. Fire Technol. 1999;35(2):153–69.

    Article  Google Scholar 

  17. Bench Zhao L. Bench scale apparatus measurement uncertainty and uncertainty effects on measurement of fire characteristics of material systems. Worcester: Worcester Polytechnic Institute; 2005.

    Google Scholar 

  18. Li R, Xu H, Hu H, Yang G, Wang J, Shen J. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J Energ Mater. 2014;32(1):50–9.

    Article  CAS  Google Scholar 

  19. Hakkarainen T, Korhonen T, Vaari J. Heat release characteristics of ethanol–water mixtures: small-scale experiments. Fire Saf J. 2017;91:174–81.

    Article  CAS  Google Scholar 

  20. Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Stand. 1950;44:387–93.

    Article  CAS  Google Scholar 

  21. Drysdale D. An introduction to fire dynamics. New York: Wiley; 2011.

    Book  Google Scholar 

  22. Shao Z, Wang W. Structure and properties of cellulose nitrate. Beijing: National Defense Industry Press; 2011.

    Google Scholar 

  23. Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.

    Article  CAS  Google Scholar 

  24. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.

    Article  CAS  Google Scholar 

  25. Girard-Lauriault PL, Gross T, Lippitz A, Unger WE. Chemical and elemental depth profiling of very thin organic layers by constant kinetic energy XPS: a new synchrotron XPS analysis strategy. Anal Chem. 2012;84(14):5984–91.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Shao Y, Matson DW, Li J, Lin Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano. 2010;4(4):1790–8.

    Article  CAS  PubMed  Google Scholar 

  27. Malitesta C, Losito I, Sabbatini L, Zambonin PG. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc. 1995;76:629–34.

    Article  CAS  Google Scholar 

  28. Niwa Y, Kobayashi H, Tsuchiya T. X-ray photoelectron spectroscopy of tetraphenylporphin and phthalocyanine. J Chem Phys. 1974;60(3):799–807.

    Article  CAS  Google Scholar 

  29. Girard-Lauriault PL, Desjardins P, Unger WE, Lippitz A, Wertheimer MR. Chemical characterisation of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure. Plasma Process Polym. 2008;5(7):631–44.

    Article  CAS  Google Scholar 

  30. Sarra-Bournet C, Gherardi N, Glénat H, Laroche G, Massines F. Effect of C2H4/N2 ratio in an atmospheric pressure dielectric barrier discharge on the plasma deposition of hydrogenated amorphous carbon-nitride films (a-C:N:H). Plasma Chem Plasma Process. 2010;30(2):213–39.

    Article  CAS  Google Scholar 

  31. Brisson PY, Darmstadt H, Fafard M, Adnot A, Servant G, Soucy G. X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells. Carbon. 2006;44(8):1438–47.

    Article  CAS  Google Scholar 

  32. Tsami A, Grillo F, Bowker M, Nix RM. Model NSR catalysts: fabrication and reactivity of barium oxide layers on Cu (1 1 1). Surf Sci. 2006;600(17):3403–18.

    Article  CAS  Google Scholar 

  33. Ozensoy E, Peden CH, Szanyi J. NO2 adsorption on ultrathin θ-Al2O3 films: formation of nitrite and nitrate species. J Phys Chem B. 2005;109(33):15977–84.

    Article  CAS  PubMed  Google Scholar 

  34. Desikusumastuti A, Happel M, Dumbuya K, Staudt T, Laurin M, Gottfried JM, Steinrück H, Libuda J. Modeling NOx storage materials: on the formation of surface nitrites and nitrates and their identification by vibrational spectroscopy. J Phys Chem C. 2008;112(16):6477–86.

    Article  CAS  Google Scholar 

  35. Saunders C, Taylor L. A review of the synthesis, chemistry and analysis of nitrocellulose. J Energ Mater. 1990;8(3):149–203.

    Article  CAS  Google Scholar 

  36. Katoh K, Je L, Itoh M, Arai M, Tamura M. Study on the spontaneous ignition of cellulose nitrate effect of the type of storage atmosphere (I). Sci Technol Energ Mater. 2003;64(6):236–40.

    CAS  Google Scholar 

  37. Katoh K, Le L, Arai M, Tamura M. Study on the spontaneous ignition of cellulose nitrate effect of the type of storage atmosphere (II). Sci Technol Energ Mater. 2004;65:77–81.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Shanghai Sailing Program (Grant No. 18YF1409600), Natural Science Foundation of Shanghai (Grant No. 16ZR1414600), the National Natural Science Foundation of China (Nos. 51376172, 50909058 and 51408181), the Research Grant Council of the Hong Kong Special Administrative Region, China (No. CityU 11301015) and the Open Foundation of State Key Laboratory of Fire Science (No. HZ2016-KF13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahao Liu or Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., He, Y., Wang, J. et al. Investigation on the combustion efficiency and residual of nitrocellulose–alcohol humectant mixtures. J Therm Anal Calorim 136, 1807–1816 (2019). https://doi.org/10.1007/s10973-018-7817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7817-3

Keywords

Navigation