Skip to main content
Log in

DSC analysis of phase transformations during precipitation hardening in Al–Zn–Mg alloy (7020)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hardening of the Al–Zn–Mg alloys during ageing process is based on very complex phase transformations. In order to contribute to the comprehension of these phenomena, we proceed to study the phase transformations of 7020 alloy using differential scanning calorimetry and X-ray diffraction analysis. The results confirm the formation of hardening phase GP zones, intermediate hardening metastable phase η′ and the equilibrium phase η. The calorimetric and X-ray diffraction results are in good agreement and confirm the successive precipitation/dissolution sequence. The dissolution of the precipitates is accompanied by the increase in the crystallographic lattice parameter due to the increase in solid solution concentration and by the softening of the material. On the contrary, the precipitation produces a lower concentration of the Zn/Mg solutes in the Al matrix, which generates a decrease in the lattice parameter value. These precipitates produce the hardening of the alloy. The sequence of phase formation and dissolution explains the evolution of the 7020 hardness as a function of the ageing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thompson DS, Subramanya BS, Levy SA. Quench rate effects in Al–Zn–Mg–Cu alloys. Metall Trans. 1971;2:1149–60.

    Article  CAS  Google Scholar 

  2. Deschamps A, Livet F, Bréchet Y. Influence of predeformation on ageing in an Al–Zn–Mg alloy-I. Microstructure evolution and mechanical properties. Acta Mater. 1999;47:281–92.

    Article  CAS  Google Scholar 

  3. Hansen V, Karlsen OB, Langsrud Y. Precipitates, zones and transitions during aging of Al–Zn–Mg–Zr 7000 series alloy]. Mater Sci Technol. 2004;20:185–93.

    Article  CAS  Google Scholar 

  4. Yang RX, Liu ZY, Ying PY, Li JL, Lin LH, Zeng SM. Multistage-aging process effect on formation of GP zones and mechanical properties in Al–Zn–Mg–Cu alloy. Trans Nonferrous Met Soc China. 2016;26:1183–90.

    Article  CAS  Google Scholar 

  5. Berg LK, GjØnnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49:3443–51.

    Article  CAS  Google Scholar 

  6. Stiller K, Warren PJ, Hansen V, Angenete J, GjØnnes J. Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C. Mater Sci Eng, A. 1999;270:55–63.

    Article  Google Scholar 

  7. Mukhopadhyay AK. Guinier–Preston zones in a high-purity Al–Zn–Mg alloy. Phil Mag Lett. 1994;70:135–40.

    Article  CAS  Google Scholar 

  8. Lendvai J. Precipitation and strengthening in aluminium alloys. Mater Sci Forum. 1996;217–222:43–56.

    Article  Google Scholar 

  9. Loffler H, Kovács I, Lendvai J. Decomposition processes in Al–Zn–Mg alloys. J Mater Sci. 1983;18:2215–40.

    Article  Google Scholar 

  10. Dlubek G, Krause R, Brümmer O, Plazaola F. Study of formation and reversion of Guinier-Preston zones in Al-4.5 at%Zn-x at%Mg alloys by positrons. J Mater Sci. 1986;21:853–8.

    Article  CAS  Google Scholar 

  11. Ferragut R, Somoza A, Dupasquier A. On the two-step ageing of a commercial Al–Zn–Mg alloy; a study by positron lifetime spectroscopy. J Phys Condens Mater. 1996;8:8945–52.

    Article  CAS  Google Scholar 

  12. Ferragut R, Somoza A, Dupasquier A. Positron lifetime spectroscopy and decomposition processes in commercial Al–Zn–Mg-based alloys. J Phys Condens Mater. 1998;10:3903.

    Article  CAS  Google Scholar 

  13. Sha G, Cerezo A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004;52:4503–16.

    Article  CAS  Google Scholar 

  14. Mondolfo LF. Aluminum alloys: structure and proprieties. London: Butterworths; 1976.

    Google Scholar 

  15. Auld JH, Vietz JT. T-phase Precipitation induced by the Addition of Silver to an Aluminium–Copper–Magnesium Alloy. J. Polmear Nat. 1966;209:703–4.

    Article  CAS  Google Scholar 

  16. Auld JH, Cousland SM. The structure of the metastable h′ phase in aluminium–zinc–magnesium alloys. J. Inst. Met. 1974;19:194–201.

    CAS  Google Scholar 

  17. Hunsicker HY, Rosenhain Proceedings of Centenary Conference on the Contribution of Physical Metallurgy to Engineering Practice, Royal Society of London, London 1976; 359–376.

  18. Yan J, Chunzhi L, Minggao Y. On the η′ precipitate phase in 7050 aluminium alloy. Mater Sci Eng, A. 1991;141:123–8.

    Article  Google Scholar 

  19. GjØnnes J, Simensen CJ. An electron microscope investigation of the microstructure in aluminium–zinc–magnesium alloy. Acta Metall. 1970;18:881–90.

    Article  Google Scholar 

  20. Degischer HP, Lacom W, Zahra A, Zahra CY. Z Metallk. 1980;71:231.

    CAS  Google Scholar 

  21. Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Mater. 2003;51:6077–94.

    Article  CAS  Google Scholar 

  22. Yu-hua Z, Shu-cai Y, Hong-zhi JI. Microstructure evolution in cooling process of Al−Zn−Mg−Cu alloy and kinetics description. Trans Nonferrous Met Soc China. 2012;22:2087–91.

    Article  CAS  Google Scholar 

  23. Li XZ, Hansen V, Gjonnes J, Wgallemberg LR. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys. Acta Mater. 1999;47:2651–956.

    Article  CAS  Google Scholar 

  24. Polmear LJ. Light alloys: metallurgy of the light alloys. 3rd ed. London: Arnold; 1995.

    Google Scholar 

  25. Huang ZW, Loretto MH, Smallman RE, White J. The mechanism of nucleation and precipitation in 7075-0.7 Li alloy. Acta Metall Mater. 1994;42(2):549–59.

    Article  CAS  Google Scholar 

  26. Lim ST, Sang Eun IL, Nam SW. Control of equilibrium phases (M, T, S) in the modified aluminum alloy 7175 for thick forging applications. Mater Trans. 2003;44(1):181.

    Article  CAS  Google Scholar 

  27. Fine ME. Phase transformations in condensed systems revisited industrial application. Metall Mater Trans A. 1996;27:2397–418.

    Article  Google Scholar 

  28. Sainfort P, Sigli C, Raynaud GM, Gomerio P. Structure and property control of aerospace alloys. Mater Sci Forum. 1997;242:25–32.

    Article  CAS  Google Scholar 

  29. Chemingui M, Khitouni M, Mesmacque G, Kolsi AW. Effect of heat treatment on plasticity of Al–Zn–Mg alloy. Phys Proc. 2009;2:1167–74.

    Article  CAS  Google Scholar 

  30. Deschamps A, Bréchet Y. Nature and distribution of quench-induced precipitation in an Al–Zn–Mg–Cu alloy. Scr Mate. 1998;39:1517–22.

    Article  CAS  Google Scholar 

  31. Thevenet D, Mliha-Touati M, Zeghloul A. Characteristics of the propagating deformation bands associated with the Portevin–Le Chatelier effect in an Al–Zn–Mg–Cu alloy. Mater Sci Eng, A. 2000;291:110–7.

    Article  Google Scholar 

  32. Lang P, Wojcik T, Falahati A, Kozeschnik E. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis. J Alloys Compd. 2014;609:129–36.

    Article  CAS  Google Scholar 

  33. Werenskiold JC, Deschamps A, Bréchet Y. Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy. Mater Sci Eng, A. 2000;293:267.

    Article  Google Scholar 

  34. Jiang XJ, Noble B, Holme B, Waterloo G, Tafto J. Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al–Zn–Mg alloy. Metall Mater Trans A. 2000;31(2):339–48.

    Article  Google Scholar 

  35. Wang SC, Starink MJ. Precipitates of intermetallic phases in precipitation hardening Al-Cu-Li-(Mg) based alloys. Int Mater Rev. 2005;50(4):193–215.

    Article  CAS  Google Scholar 

  36. Buha J, Lumley RN, Crosky AG. Secondary ageing in an aluminum alloy 7050. Mater Sci Eng, A. 2008;492:1–10.

    Article  CAS  Google Scholar 

  37. MacAskill IA, LaDelpha ADP, Milligan JH, Fulton J, Bishop DP. Effect of cold and hot densification on the mechanical properties of a 7XXX series powder metallurgy alloy. Powder Metall. 2009;52(4):304–10.

    Article  CAS  Google Scholar 

  38. Du ZW, Sun ZM, Shao BL, Zhou TT, Chen CQ. Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging. Mater Charact. 2006;56:121–8.

    Article  CAS  Google Scholar 

  39. Ghosh KS, Gao N. Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al–Zn–Mg alloy. Trans Nonferrous Met Soc China. 2011;21:1199–209.

    Article  CAS  Google Scholar 

  40. Yassar SR, Field PD, Weiland H. The effect of predeformation on the β″ and β′ precipitates and the role of Q′ phase in an Al-Mg-Si alloy; AA6022. Scr Mater. 2005;53:299–303.

    Article  CAS  Google Scholar 

  41. Chemingui M, Khitouni M, Jozwiak K, Mesmacque G, Kolsi AW. Characterization of the mechanical properties changes in an Al–Zn–Mg alloy after a two-step ageing treatment at 70 and 135°C. Mater Des. 2010;31:3134–9.

    Article  CAS  Google Scholar 

  42. Mostafapoor S, Malekan M, Emamy M. Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-018-7426-1.

  43. Mostafapoor S, Malekan M, Emamy M. Thermal analysis study on the grain refinement of Al–15Zn–2.5 Mg–2.5Cu alloy. J Therm Anal Calorim. 2017;127:1941–52.

    Article  CAS  Google Scholar 

  44. Cardoso KR, Travessa DN, Botta WJ, Jorge AM. High Strength AA7050 Al alloy processed by ECAP: microstructure and mechanical properties. Mater Sci Eng, A. 2011;528:5804–11.

    Article  CAS  Google Scholar 

  45. Zhao YH, Liao XZ, Jin Z, Valiev RZ, Zhu YT. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004;52:4589–99.

    Article  CAS  Google Scholar 

  46. Shaeri MH, Salehi MT, Seyyedein SH, Abutalebi MR, Park JK. Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater Des. 2014;57:50–257.

    Article  CAS  Google Scholar 

  47. Ghiaasiaan R, Amirkhiz BS, Shankar S. Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al–Zn–Mg–Cu (7000) alloys. Mater Sci Eng, A. 2017;698:206–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Leila Mahfoudhi, teacher of English in the Sfax Faculty of Sciences, for proofreading and polishing the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemingui, M., Ameur, R., Optasanu, V. et al. DSC analysis of phase transformations during precipitation hardening in Al–Zn–Mg alloy (7020). J Therm Anal Calorim 136, 1887–1894 (2019). https://doi.org/10.1007/s10973-018-7856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7856-9

Keywords

Navigation