Skip to main content
Log in

Determination of thermal properties of some sulfide thin films using electropyroelectric method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a simple theoretical model of a nondestructive electropyroelectric technique in front configuration to easily determine all static and dynamic thermal parameters of semiconductors sulfides thin films. The suitability of the method was demonstrated with investigations on several binary and sulfides (NiS and Sb2S3) and ternary ones (ZnIn2S4 and CuInS2). The validity of our theoretical approaches was investigated by determining all the thermal properties of the antimony(III) sulfide (Sb2S3) thin film and comparing them with published results. The thermal conductivity and the thermal diffusivity of nickel sulfide NiS have been investigated yielding unprecedented values of k = 5.8 W m−1 K−1 and D = 2.01 × 10−6 m2 s−1. In addition, to the authors’ knowledge, this study is the first attempt at defining thermal diffusivity, thermal effusivity, and heat capacity of copper–indium sulfide CuInS2. Finally, it was found that ZnIn2S4 compound has a higher thermal conductivity and diffusivity values which lead us to conclude that it is the most suitable alloy for optoelectronic, solar cells and photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boughalmi R, Boukhachem A, Kahlaoui M, Maghraoui H, Amlouk M. Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications. Mater Sci Semicond Process. 2014;26:593–602.

    Article  CAS  Google Scholar 

  2. Boughalmi R, Rahmani R, Boukhachem A, Amrani B, Driss-Khodja K, Amlouk M. Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks. Mater Chem Phys. 2015;163:99–106.

    Article  CAS  Google Scholar 

  3. Lazzez S, Ben Mahmoud KB, Abroug S, Saadallah F, Amlouk M, Boubaker A. polynomials expansion scheme (BPES)-related protocol for measuring sprayed thin films thermal characteristics. Curr Appl Phys. 2009;9:1129–33.

    Article  Google Scholar 

  4. Guezmir N, Nasrallah TB, Boubaker K, Amlouk M, Belgacem S. Optical modeling of compound CuInS2 using relative dielectric function approach and Boubaker polynomials expansion scheme BPES. J Alloys Compd. 2009;481:543–8.

    Article  CAS  Google Scholar 

  5. Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin–fin diameter. Int J Heat Mass Transf. 2018;117:861–72.

    Article  CAS  Google Scholar 

  6. Ali HM, Arshad A, Jabbal M, Verdin PG. Thermal management of electronics devices with PCMs filled pin–fin heat sinks: a comparison. Int J Heat Mass Transf. 2018;117:1199–204.

    Article  CAS  Google Scholar 

  7. Ashraf MJ, Ali HM, Usman H, Arshad A. Experimental passive electronics cooling: parametric investigation of pin–fin geometries and efficient phase change materials. Int J Heat Mass Transf. 2017;115:251–63.

    Article  CAS  Google Scholar 

  8. Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf. 2017;112:649–61.

    Article  CAS  Google Scholar 

  9. Ali HM, Ashraf MJ, Giovannelli A, Irfan M, BinIrshad T, Hamid HM, Hassan F, Arshad A. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018;123:272–84.

    Article  CAS  Google Scholar 

  10. Arshad A, Ali HM, Yan WM, Hussein AK, Ahmadlouydarab M. An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Appl Therm Eng. 2018;132:52–66.

    Article  CAS  Google Scholar 

  11. Usman H, Ali HM, Arshad A, Ashraf MJ, Khushnood S, Janjua MM, Kazi SN. An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat Mass Transf. 2018. https://doi.org/10.1007/s00231-018-2389-0.

    Article  Google Scholar 

  12. Ali HM, Arshad A, Janjua MM, Baig W, Sajjad U. Thermal performance of LHSU for electronics under steady and transient operations modes. Int J Heat Mass Transf. 2018;127A:1223–32.

    Article  CAS  Google Scholar 

  13. Arshad A, Ali HM, Yan WM, Hussein AK, Louydarab AM. An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Appl Therm Eng. 2018;132:52–66.

    Article  CAS  Google Scholar 

  14. Ivanov R, Marin E, Moreno I, Araujo C. Electropyroelectric technique for measurement of the thermal effusivity of liquids. J Phys D Appl Phys. 2010;43:225501.

    Article  CAS  Google Scholar 

  15. Ivanov R, Martínez-Ordoñez EI, Marin E, Araujo C, Alaniz D, Araiza ME, Villa J, de la Rosa-Vargas JI. Absolute measurements of thermal effusivity using the electropyroelectric technique. Thermochim Acta. 2013;554:59–62.

    Article  CAS  Google Scholar 

  16. Ivanov R, Marin E, Villa J, Gonzalez E, Rodríguez CI, Olvera JE. Electropyroelectric technique: a methodology free of fitting procedures for thermal effusivity determination in liquids. Rev Sci Instrum. 2015;86:064902.

    Article  CAS  PubMed  Google Scholar 

  17. Bennaji N, Mellouki I, Yacoubi N. Thermal properties of metals using electro-pyroelectric technique. Sens Lett. 2009;7:716–20.

    Article  CAS  Google Scholar 

  18. Bennaji N, Mellouki I, Yacoubi N. Thermal properties of metals alloy by electrical pyroelectric method (EPE). J Phys Conf Ser. 2010;214:012138.

    Article  CAS  Google Scholar 

  19. Bennaji N, Mami A, Mellouki I, Yacoubi N. A new method for thermo-electrical properties of GaSb by electro-pyroelectric technique. J Therm Anal Calorim. 2017;127:641–4.

    Article  CAS  Google Scholar 

  20. Mami A, Mellouki I, Ben Mbarek M, Amlouk M, Yacoubi N. Deep thermal investigations on Ag2S thin film along with electropyroelectric and photothermal deflection techniques. IEEE Sens J. 2016;16:8374–80.

    CAS  Google Scholar 

  21. Ito S, Tsujimoto K, Nguyen C, Manabe K, Nishino H. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int J Hydrog Energy. 2013;38:16749–54.

    Article  CAS  Google Scholar 

  22. Maiti N, Im SH, Lim CS, Seok SI. A chemical precursor for depositing Sb2S3 onto mesoporous TiO2 layers in nonaqueous media and its application to solar cells. Dalton Trans. 2012;38:11569–72.

    Article  CAS  Google Scholar 

  23. Huang Y, Xie G, Chen S, Gao S. Preparation and photocatalytic activity of Sb2S3/Bi2S3doped TiO2 from complex precursor via gel–hydrothermal treatment. J Solid State Chem. 2011;184:502–8.

    Article  CAS  Google Scholar 

  24. Jana S, Mukherjee N, Chakraborty B, Mitra BC, Mondal A. Electrodeposited polymer encapsulated nickel sulphide thin films: frequency switching material. Appl Surf Sci. 2010;300:154–8.

    Article  CAS  Google Scholar 

  25. Cui W, Guo D, Liu L, Hu J, Rana D, Liang Y. Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3under visible light irradiation. Catal Commun. 2014;48:55–9.

    Article  CAS  Google Scholar 

  26. Su L, Ye X, Meng S, Fu X, Chen S. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation. Appl Surf Sci. 2016;384:161–74.

    Article  CAS  Google Scholar 

  27. Duta A, Andronic L, Enesca A. The influence of low irradiance and electrolytes on the mineralization efficiency of organic pollutants using the vis-active photocatalytic tandem CuInS2/TiO2/SnO2. Catal Today. 2017. https://doi.org/10.1016/j.cattod2017.03.018.

    Article  Google Scholar 

  28. Mami A, Bennaji N, Mellouki I, Yacoubi N. A thermo-electrical parameters investigation of Mylar film using pyroelectric techniques. Int J Polym Anal. 2016. https://doi.org/10.1080/1023666X.2016.1256138.

    Article  Google Scholar 

  29. Seboui Z, Ajili M, Jebbari N, Kamoun TN. Effect of spray solution flow rate on the physical properties of CuInS2. Eur Phys J Appl Phys. 2013;62:30302.

    Article  CAS  Google Scholar 

  30. Lewis RJ. Sax’s dangerous properties of industrial materials. 11th ed. New York: Wiley; 2004.

    Book  Google Scholar 

  31. Patnaik P. Handbook of inorganic chemicals. New York: McGraw-Hill; 2003. p. 55–6.

    Google Scholar 

  32. Seidell A. Solubilities of inorganic and metal organic compounds. 3rd ed. New York: D Van Nostrand Company; 1940. p. 1316–9.

    Google Scholar 

  33. Gamsjäger H, Bugajski J, Gajda T, Lemire RJ, Preis W. Book chemical thermodynamics of nickel. Amsterdam: Elsevier; 2005. p. 131.

    Google Scholar 

  34. Verschueren K. Handbook of environmental data on organic chemicals. 4th ed. New York: Wiley; 2001.

    Google Scholar 

  35. Chase MW Jr. NIST-JANAF themochemical tables. J Phys Chem Ref Data Monogr. 1998;9:963-4.

    Google Scholar 

  36. Budavari S, Neil MJ, Smith A, et al. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station: Merck and Co; 2001. p. 1810.

    Google Scholar 

  37. Sipowska JT, Mc Bride JJ, Westrum EF. Heat capacity and thermodynamic properties of anisotropic crystals: PbI2, ZnCl2, and AsI3 at temperatures from 5 to 350 K. J Chem Thermodyn. 1998;30:1333–45.

    Article  CAS  Google Scholar 

  38. Sil-Pad® 900S Product Datasheet, Bergquist Company, PDS-SP-900S-0115. 2015. www.bergquistcompany.com.

  39. Wang C, Mandelis A. Measurement of thermal diffusivity of air using photopyroelectric interferometry. Rev Sci Instrum. 1999;70:2372–8.

    Article  CAS  Google Scholar 

  40. Shaji S, Arato A, O’Brien JJ, Liu J, Castillo GA, Palma MIM, Roy TKD, Krishnan B. Chemically deposited Sb2S3 thin films for optical recording. J Phys D Appl Phys. 2010;43:075404.

    Article  CAS  Google Scholar 

  41. Arun P, Vedeshwar AG, Mehra NC. Laser-induced crystallization in Sb2S3 films. Mater Res Bull. 1997;32:907–13.

    Article  CAS  Google Scholar 

  42. Sparks JT, Komoto T. Metal-to-semiconductor transition in hexagonal NiS. Rev Mod Phys. 1968;40:752.

    Article  CAS  Google Scholar 

  43. Burnett JD, Gourdon O, Ranmohotti KGS, Takas NJ, Djieutedjeu H, Poudeu PFP, Aitken JA. Structure–property relationships along the Fe-substituted CuInS2 series: tuning of thermoelectric and magnetic properties. Mater Chem Phys. 2014;147:17–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mami, A., Boughalmi, R., Lazzez, S. et al. Determination of thermal properties of some sulfide thin films using electropyroelectric method. J Therm Anal Calorim 136, 2231–2238 (2019). https://doi.org/10.1007/s10973-018-7863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7863-x

Keywords

Navigation