Skip to main content
Log in

Thermal decomposition of calcium oxalate: beyond appearances

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of this study is twofold: to take a fresh look at the decomposition of calcium oxalate and to warn users of thermogravimetric analysis against the hasty interpretation of results obtained. Since the pioneer work of Duval 70 years ago, the scientific community has agreed unanimously as to the decomposition of anhydrous calcium oxalate (CaC2O4) into calcium carbonate (CaCO3) and CO gas, and that of the calcium carbonate into calcium oxide (CaO), and CO2 gas. We will demonstrate how these reactions, simple in appearance, in fact result from a succession of reactive phenomena involving numerous constituents both solid (CaCO3, free carbon) and gaseous (CO2 and CO) produced by intermediary reactions. The mass losses evaluated in the two distinct domains correspond closely to the molar masses of CO and CO2, respectively. The simple mathematical calculation of that mass loss has simply concealed the existence of other reactions, and, most particularly the Boudouard reaction and that of solid phases between CaCO3 and C. It just goes to show that appearances can be deceiving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Parmar MS. Kidney stones. Br Med J. 2004;328:1420–4.

    Article  Google Scholar 

  2. Verrecchia EP, Braissant O, Cailleau G. The oxalate–carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: Gadd GM, editor. Fungi biogeochemical cycles [Internet]. Cambridge: Cambridge University Press; 2006. p. 289–310.

    Chapter  Google Scholar 

  3. Ahmed J, Ojha K, Vaidya S, Ganguli J, Ganguli A. Formation of calcium oxalate nanoparticles in leaves: significant role of water content and age of leaves. Curr. Sci. India. 2012;103:293–8.

    CAS  Google Scholar 

  4. Franceschi VR, Nakata PA. Calcium oxalate in plants: Formation and function. Annu Rev Plant Biol. 2005;56:41–71.

    Article  CAS  PubMed  Google Scholar 

  5. Ciccarone C, Pinna D. Calcium oxalate films on stone monuments—Microbiological investigations. Aerobiologia. 1993;9:33–7.

    Article  Google Scholar 

  6. Del Monte M, Sabbioni C, Zappia G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ. 1987;67:17–39.

    Article  Google Scholar 

  7. East CP, Doherty WOS, Fellows CM, Yu H. Formation of thermodynamically unstable calcium oxalate dihydrate in sugar mill evaporators. Proceeding 32nd Aust Soc Sugar Cane Technol ASSCT Conf. Bundaberg, Queensland: ASSCT; 2010. p. 522–33.

  8. Peltier S, Duval C. Sur la thermogravimétrie des précipités analytiques. Anal Chim Acta. 1947;1:345–54.

    Article  CAS  Google Scholar 

  9. Müller-Vonmoos M, Kahr G, Rub A. DTA-TG-MS in the investigation of clays: quantitative determination of H2O, CO and CO2 by evolved gas analysis with a mass spectrometer. Thermochim Acta. 1977;20:387–93.

    Article  Google Scholar 

  10. Wang J, McEnaney B. Quantitative calibration of a TPD-MS system for CO and CO2 using calcium carbonate and calcium oxalate. Thermochim Acta. 1991;190:143–53.

    Article  CAS  Google Scholar 

  11. Antal MJ, Varhegyi G, Jakab E. Cellulose pyrolysis kinetics: revisited. Ind Eng Chem Res. 1998;37:1267–75.

    Article  CAS  Google Scholar 

  12. Cao Y, Casenas B, Pan W-P. Investigation of chemical looping combustion by solid fuels. 2. Redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier. Energy Fuels. 2006;20:1845–54.

    Article  CAS  Google Scholar 

  13. Haines PJ. Thermogravimetry: thermal methods of analysis—principles, applications and problems [Internet]. Dordrecht: Springer; 1995. p. 22–62.

    Google Scholar 

  14. Gallagher PK. An evolved gas analysis system. Thermochim Acta. 1978;26:175–83.

    Article  CAS  Google Scholar 

  15. Price D, Dollimore D, Fatemi NS, Whitehead R. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition. Thermochim Acta. 1980;42:323–32.

    Article  CAS  Google Scholar 

  16. Szekely T, Varhegyi G, Till F, Szabo P, Jakab E. The effects of heat and mass transport on the results of thermal decomposition studies: Part 1. The three reactions of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 1987;11:71–81.

    Article  CAS  Google Scholar 

  17. Manley TR. Thermal analysis of polymers. Pure Appl Chem. 2018;61:1353.

    Article  Google Scholar 

  18. Giron D. Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Pharm Therm Anal. 1995;248:1–59.

    CAS  Google Scholar 

  19. Frost RL, Weier ML. Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochim Acta. 2004;409:79–85.

    Article  CAS  Google Scholar 

  20. Kociba KJ, Gallagher PK. A study of calcium oxalate monohydrate using dynamic differential scanning calorimetry and other thermoanalytical techniques. Thermochim Acta. 1996;282–283:277–96.

    Article  Google Scholar 

  21. Slager TL, Prozonic FM. Simple methods for calibrating IR in TGA/IR analyses. Thermochim Acta. 2005;426:93–9.

    Article  CAS  Google Scholar 

  22. Simons EL, Newkirk AE. New studies on calcium oxalate monohydrate. Talanta. 1964;11:549–71.

    Article  CAS  Google Scholar 

  23. Le Parlouër P. Thermal analysis and calorimetry techniques for catalytic investigations. In: Auroux A, editor. Calorimetry and thermal methods in catalysis [Internet]. Berlin: Springer; 2013. p. 51–101.

    Chapter  Google Scholar 

  24. Hotová G, Slovák V. Quantitative TG-MS analysis of evolved gases during the thermal decomposition of carbon containing solids. Thermochim Acta. 2016;632:23–8.

    Article  CAS  Google Scholar 

  25. Arii T. Evolved gas analysis-mass spectrometry (EGA-MS) using skimmer interface system equipped with pressure control function. J Mass Spectrom Soc Jpn. 2005;53:211–6.

    Article  CAS  Google Scholar 

  26. Boudouard O. Les phénomènes de combustion dans les foyers industriels. Rev Phys Chim. 1901;25:6.

    Google Scholar 

  27. Vallet P. Thermogravimétrie: étude critique et théorique: utilisation, principaux usages [Internet]. New York: Gauthier-Villars; 1972.

    Google Scholar 

  28. Petit I, Belletti GD, Debroise T, Llansola-Portoles MJ, Lucas IT, Leroy C, et al. Vibrational signatures of calcium oxalate polyhydrates. ChemistrySelect. 2018;3:8801–12.

    Article  CAS  Google Scholar 

  29. Pinto BV, Ferreira APG, Cavalheiro ETG. Thermal degradation mechanism for citalopram and escitalopram. J Therm Anal Calorim. 2018;133:1509–18.

    Article  CAS  Google Scholar 

  30. McLafferty FW, Gore J. Spectrographie de masse: introduction a l’interpretation des spectres de masse. Ed. francaise dirigee par jacques gore. Ediscience; 1969.

  31. Rak J, Skurski P, Gutowski M, Błażejowski J. Thermodynamics of the thermal decomposition of calcium oxalate monohydrate examined theoretically. J Therm Anal. 1995;43:239–46.

    Article  CAS  Google Scholar 

  32. Błażejowski J, Zadykowicz B. Computational prediction of the pattern of thermal gravimetry data for the thermal decomposition of calcium oxalate monohydrate. J Therm Anal Calorim. 2013;113:1497–503.

    Article  CAS  Google Scholar 

  33. Dollimore D. Thermal analysis. Anal Chem. 1996;68:63–72.

    Article  CAS  Google Scholar 

  34. Berger R. Fabian JH. Thermal analysis of nanogram quantities using a micromechanical cantilever sensor. In: North American Thermal Analysis Society Proceedings, Pittsburgh; 2002.

  35. PhD thesis of Jan-Henning Fabian, Mikromechanische Oszillatoren für die thermisch-gravimetrische Analyse, University of Basel; 2001.

Download references

Acknowledgements

I gratefully acknowledge discussions with Professor P. Perrot, concerning thermodynamic calculations. My sincere thanks to C. Bonhomme, D.Laurencin, S. Venkatachalam, A. Bleuzen, and J. N. Jaubert for their encouragements. Further, thanks to Dr. H. H. Fabian and R. Berger for giving me permission to use their TGA curve for comparison. Thanks also to the people from Netzsch company; Dr Juergen Blumm and his team, as well as, Thierry Choucroun and Jean-Christophe Jullien, for their technical support by providing ultrasensitive TGA/MS devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Hourlier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hourlier, D. Thermal decomposition of calcium oxalate: beyond appearances. J Therm Anal Calorim 136, 2221–2229 (2019). https://doi.org/10.1007/s10973-018-7888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7888-1

Keywords

Navigation