Skip to main content
Log in

An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results of an experimental investigation on the heat transfer characteristics of multi-walled carbon nanotube aqueous nanofluids inside a countercurrent double-pipe heat exchanger using porous media. Aluminum porous media (ε = 67%) were used because of the construction of the medium, with porous plate media at the center of the inner tube and with three porous plates on the walls of the inner tube. The effects of operating parameters including flow rate (4600 < Re < 7600), mass fractions of nanofluids (0.04–0.25 mass%), and inlet temperature of nanofluids (Tin = 50 °C) on the heat transfer coefficient were investigated. The results indicate that imposing the plate porous media increases the heat transfer coefficient significantly, and the highest increase in the heat transfer coefficient is 35% which is obtained in the test of the lowest mass fraction (0.04 mass%) with three-plate porous media in the experiment range. As the mass fractions increased, the value of heat transfer enhancement assisted by porous media gradually decreased. Also the lower range 100 (L h−1) of the volume flow rate has a powerful enhancement on the enhancement coefficient, while the higher ranges 300 (L h−1) have low influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

D, d :

Diameter (m)

K :

Thermal conductivity (W m−1 °C−1)

C p :

Specific heat (J kg−1 °C−1)

Re:

Reynolds number

T :

Fluid temperature (°C)

T w :

Wall temperature (°C)

LMTD:

Log mean temperature difference (°C)

U :

Overall heat transfer coefficient (W m−2 °C−1)

h :

Heat transfer coefficient (W m−2 °C−1)

m :

Volume flow rate (m3 s−1)

:

Mass flow rate (kg s−1)

Nu:

Nusselt number

Pr:

Prandtl number

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Fluid density (kg m−3)

mass%:

Mass fraction

w:

Wall

c:

Cold

h:

Hot

i:

Inlet

o:

Outlet

in:

Inter

out:

Outer

ip:

Inlet of pipe

ave:

Average

b:

Bulk

References

  1. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15. https://doi.org/10.1007/s10973-018-7009-1.

    Article  CAS  Google Scholar 

  2. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004 (In Press).

    Article  Google Scholar 

  3. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    Article  CAS  Google Scholar 

  4. Hemmat Esfe M, Hassani Ahangar MR, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126:837–43.

    Article  CAS  Google Scholar 

  5. Lotfi R, Rashidi AM, Amrollahi A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;1:108–11. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002.

    Article  CAS  Google Scholar 

  6. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7):2059–67. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023.

    Article  CAS  Google Scholar 

  7. Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–59. https://doi.org/10.1007/s10973-017-6900-5.

    Article  CAS  Google Scholar 

  8. Rabienataj Darzi A, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al2O3–water nanofluid in a double tube heat exchanger. Int Commun Heat Mass Transf. 2013;47:105–12. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.003.

    Article  CAS  Google Scholar 

  9. Esfe MH, Hajmohammad H, Toghraie D, Rostamian H, Mahian O, Wongwises S. Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems. Energy. 2017;137:160–71. https://doi.org/10.1016/j.energy.2017.06.104.

    Article  CAS  Google Scholar 

  10. Chun BH, Kang HU, Hyun Kim S. Effect of alumina nanoparticles in the fluid on heat transfer in double pipe heat exchanger system. Kor J Chem Eng. 2008;25:966–71. https://doi.org/10.1007/s11814-008-0156-5.

    Article  CAS  Google Scholar 

  11. Aghayari R, Maddah H, Ashori F, Hakiminejad A, Aghili M. Effect of nanoparticles on heat transfer in mini double pipe heat exchangers in turbulent flow. Heat Mass Transf. 2013. https://doi.org/10.1007/s00231-014-1415-0.

    Article  Google Scholar 

  12. Sadighi Dizaji H, Jafarmadar S, Mobadersani F. Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger. Int J Therm Sci. 2015;96:211–20. https://doi.org/10.1016/j.ijthermalsci.2015.05.009.

    Article  Google Scholar 

  13. Khedkar R, Sonawane SS, Wasewar KL. Heat transfer study on concentric tube heat exchanger using TiO2–water-based nanofluid. Int Commun Heat Mass Transf. 2014. https://doi.org/10.1016/j.icheatmasstransfer.2014.07.011.

    Article  Google Scholar 

  14. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33. https://doi.org/10.1016/j.enconman.2013.09.008.

    Article  CAS  Google Scholar 

  15. Chandra Sekhara Reddy M, Vasudeva Rao V. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf. 2014;50:68–76. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.002.

    Article  CAS  Google Scholar 

  16. Liu L, Kim E, Park YG, Jacobi AM. The potential impact of nanofluid enhancements on the performance of heat exchangers. Heat Transf Eng. 2012;33:31–41. https://doi.org/10.1080/01457632.2011.584814.

    Article  CAS  Google Scholar 

  17. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNTnanofluids). Int J Heat Mass Transf. 2005;49:240–50. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.

    Article  CAS  Google Scholar 

  18. Sarafraz MM, Hormozi F, Nikkhah V. Thermal performance of a counter-current double pipe heat exchanger working with COOH–CNT/water nanofluids. Exp Thermal Fluid Sci. 2016;78:41–9. https://doi.org/10.1016/j.expthermflusci.2016.05.014.

    Article  CAS  Google Scholar 

  19. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129(2):859–67. https://doi.org/10.1007/s10973-017-6213-8.

    Article  CAS  Google Scholar 

  20. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66. https://doi.org/10.1007/s10973-017-6649-x.

    Article  CAS  Google Scholar 

  21. Alrashed AAA, Akbari OA, Heydari A, Toghraie A, Zarringhalam M, Shabani GAS, Seifi AR, Goodarzi M. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B. 2018;537:176–83. https://doi.org/10.1016/j.physb.2018.02.022.

    Article  CAS  Google Scholar 

  22. Akhavan-Behabadi MA, Shahidi M, Aligoodarz MR, Fakoor-Pakdaman M. An experimental investigation on rheological properties and heat transfer performance of MWCNT-water nanofluid flow inside vertical tubes. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.

    Article  Google Scholar 

  23. Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf. 2015;89:620–6. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082.

    Article  CAS  Google Scholar 

  24. Diao Y, Li CZ, Zhang J, Zhao Y, Kang Y. Experimental investigation of MWCNT–water nanofluids flow and convective heat transfer characteristics in multiport minichannels with smooth/micro-fin surface. Powder Technol. 2017;305:206–16. https://doi.org/10.1016/j.powtec.2016.10.011.

    Article  CAS  Google Scholar 

  25. Karimipour-Fard P, Afshari E, Ziaei-Rad M, Taghian-Dehaghani S. A numerical study on heat transfer enhancement and design of a heat exchanger with porous media in continuous hydrothermal flow synthesis system. Chin J Chem Eng. 2017. https://doi.org/10.1016/j.cjche.2017.01.015.

    Article  Google Scholar 

  26. Chamkha A, Rashad A, Aly A. Non-Darcy natural convection of a nanofluid about a permeable vertical cone embedded in a porous medium. Int J Microscale Nanoscale Therm Microscale Nanoscale Therm. 2012;4:99–114.

    Google Scholar 

  27. Bourantas G, Skouras E, Loukopoulos V. Heat transfer and natural convection of nanofluids in porous media. Eur J Mech B. 2014;43:45–56. https://doi.org/10.1016/j.euromechflu.2013.06.013.

    Article  Google Scholar 

  28. Sheremet M, Pop I, Bachok N. Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: tiwari and Das’ nanofluid model. Int J Heat Mass Transf. 2016;92:1053–60. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.071.

    Article  CAS  Google Scholar 

  29. Uddin Z, Harmand S. Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium. Nanoscale Res Lett. 2013. https://doi.org/10.1186/1556-276x-8-64.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armaghani T, Chamkha AJ, Maghrebi J, Nazari M. Numerical analysis of a nanofluid forced convection in a porous channel: a new heat flux model in LTNE condition. J Porous Media. 2014;17:637–46. https://doi.org/10.1615/JPorMedia.v17.i7.60.

    Article  Google Scholar 

  31. Nasrin R, Alim MA, Chamkha AJ. Effect of the heating wall position on forced convection along two sided open enclosure with porous medium utilizing nanofluid. Int J Energy Technol Policy. 2013;5:1–13.

    Google Scholar 

  32. Nasrin R, Alim MA, Chamkha AJ. Numerical simulation of non-Darcy forced convection through a channel with non-uniform heat flux in an open cavity using nanofluid. Numer Heat Transf A. 2013;64:820–40. https://doi.org/10.1080/10407782.2013.798536.

    Article  CAS  Google Scholar 

  33. Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha A, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Heat and Mass Transf. 2017;107:778–91. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074.

    Article  CAS  Google Scholar 

  34. Pavel B, Pavel I, Abdulmajeed A. Mohamad, an experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. Int J Heat Mass Transf. 2005;47:4939–52. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.014.

    Article  CAS  Google Scholar 

  35. Mohamad A. Heat transfer enhancements in heat exchangers fittedwith porous media part i: constant wall temperature. Int J Therm Sci. 2003;42:385–95. https://doi.org/10.1016/S1290-0729(02)00039-X.

    Article  Google Scholar 

  36. Targui N, Kahalerras H. Analysis of fluid flow and heat transfer in a double-pipe heat exchanger with porous structures. Energy Convers Manag. 2008;49:3217–29. https://doi.org/10.1016/j.enconman.2008.02.010.

    Article  Google Scholar 

  37. Sarafraz MM, Hormozi F. Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp Therm Fluid Sci. 2015;66:279–89. https://doi.org/10.1016/j.expthermflusci.2015.03.028.

    Article  CAS  Google Scholar 

  38. Hosseinian A, Meghdadi Isfahani AH. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger. Heat Mass Transf. 2017. https://doi.org/10.1007/s00231-017-2213-2.

    Article  Google Scholar 

  39. Pak BC, Cho YI. Hydrodynamic and heat trans fer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  40. Heydari M, Toghraie D, Akbari OA. The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Therm Sci Eng Prog. 2017;2:140–50. https://doi.org/10.1016/j.tsep.2017.05.010.

    Article  Google Scholar 

  41. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131:1106–16. https://doi.org/10.1016/j.ijmecsci.2017.07.049.

    Article  Google Scholar 

  42. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Heat Mass Transf. 2014. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.037.

    Article  Google Scholar 

  43. Chavda NK. effect of nanofluid on heat transfer characteristics of double pipe heat exchanger: part-II: effect of copper oxide nanofluid. Int J Res Eng Technol. 2015;4:688–96.

    Article  Google Scholar 

  44. Syam Sundar L, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017. https://doi.org/10.1016/j.rser.2016.09.108.

    Article  Google Scholar 

  45. Ganeshkumar J, Kathirkaman D, Raja K, Kumaresan V, Velraj R. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes. Therm Sci. 2017;21:255–65. https://doi.org/10.2298/tsci141015028g.

    Article  Google Scholar 

  46. Hosseini M, Sadri R, Kazi SN, Bagheri S, Zubir N, Bee Teng C, Zaharinie T. Experimental study on heat transfer and thermo-physical properties of covalently functionalized carbon nanotubes nanofluids in an annular heat exchanger: a green and novel synthesis. Energy Fuels. 2017;31:5635–44. https://doi.org/10.1021/acs.energyfuels.6b02928.

    Article  CAS  Google Scholar 

  47. Aravind SJ, Baskar P, Baby TT, Sabareesh RK, Das S, Ramaprabhu S. Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. J Phys Chem. 2011;34:16737–44.

    Google Scholar 

  48. Mohammed H, Hasan H, Wahid M. Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. Int Commun Heat Mass Transf. 2013;40:36–46. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Toghraie, D., Isfahani, A.H.M. et al. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim 137, 1797–1807 (2019). https://doi.org/10.1007/s10973-019-08076-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08076-0

Keywords

Navigation