Skip to main content
Log in

CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In current investigation, ferrofluid circulation and energy transport inside a wavy-walled porous enclosure are modeled considering radiation and EHD effects. The finite volume method is employing for simulation of EHD circulation structures and thermal transmission. Properties of working fluid depend on the electric field and nanosized solid particles concentration. Impacts of thermal radiation, nanoparticles shape, and volume fraction are considered in governing equations. Distributions of unknown functions are received for various voltage, permeability, radiation parameters, nanoparticles’ shape and concentration. Results have shown that platelet form leads to the strongest convective circulation. An amplification of electric force characterizes a diminution of the boundary layer thickness. Greater permeability of the porous medium characterizes the strongest convective circulation and thermal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. Boca Raton: CRC Press; 2016.

    Book  Google Scholar 

  2. Sheikholeslami M, Shamlooei M. Convective flow of nanofluid inside a lid driven porous cavity using CVFEM. Physica B Condens Matter. 2017;521:239–50.

    Article  CAS  Google Scholar 

  3. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805.

    Article  CAS  Google Scholar 

  4. Astanina MS, Sheremet MA, Umavathi JC. Transient natural convection with temperature-dependent viscosity in a square partially porous cavity having a heat-generating source. Numer Heat Transf A. 2018;73:849–62.

    Article  Google Scholar 

  5. Sheikholeslami M, Li Z, Shamlooei M. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A. 2018;382:1615–32.

    Article  CAS  Google Scholar 

  6. Sheikholeslami M, Chamkha AJ. Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf A. 2016;69:1186–200.

    Article  CAS  Google Scholar 

  7. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int J Mech Sci. 2019;150:637–55.

    Article  Google Scholar 

  8. Mehryan SAM, Kashkooli FM, Ghalambaz M, Chamkha AJ. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. Adv Powder Technol. 2017;28:2295–305.

    Article  CAS  Google Scholar 

  9. Ho CJ, Chiou YH, Yan WM, Ghalambaz M. Transient cooling characteristics of Al2O3-water nanofluid flow in a microchannel subject to a sudden-pulsed heat flux. Int J Mech Sci. 2019;151:95–105.

    Article  Google Scholar 

  10. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of alumina-water nanofluid in an open cavity having multiple porous layers. Int J Heat Mass Transf. 2018;125:648–57.

    Article  CAS  Google Scholar 

  11. Khanafer K, Vafai K. Applications of nanofluids in porous medium. A critical review. J Therm Anal Calorim. 2019;135:1479–92.

    Article  CAS  Google Scholar 

  12. Alsabery AI, Tayebi T, Chamkha AJ, Hashim I. Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below. Int Commun Heat Mass Transf. 2018;95:197–209.

    Article  Google Scholar 

  13. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  14. Ashorynejad HR, Shahriari A. MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 2018;9:440–55.

    Article  Google Scholar 

  15. Pal SK, Bhattacharyya S, Pop I. Effect of solid-to-fluid conductivity ratio on mixed convection and entropy generation of a nanofluid in a lid-driven enclosure with a thick wavy wall. Int J Heat Mass Transf. 2018;127:885–900.

    Article  CAS  Google Scholar 

  16. Qi C, Zhao N, Cui X, Chen T, Hu J. Effects of half spherical bulges on heat transfer characteristics of CPU cooled by TiO2-water nanofluids. Int J Heat Mass Transf. 2018;123:320–30.

    Article  CAS  Google Scholar 

  17. Sheikholeslami M, Haq R, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  18. Alsabery AI, Mohebbi R, Chamkha AJ, Hashim I. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci. 2019;201:247–63.

    Article  CAS  Google Scholar 

  19. Ahmed SE, Rashed ZZ. MHD natural convection in a heat generating porous medium-filled wavy enclosures using Buongiorno’s nanofluid model. Case Stud Therm Eng. 2019;14:100430.

    Article  Google Scholar 

  20. Ebrahimi-Moghadam A, Moghadam AJ. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  22. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019;343:880–907.

    Article  CAS  Google Scholar 

  23. Hoghoughi G, Izadi M, Oztop HF, Abu-Hamdeh N. Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno’s model. J Mol Liq. 2018;255:148–59.

    Article  CAS  Google Scholar 

  24. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  25. Javed T, Mehmood Z, Abbas Z. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Physica B Condens Matter. 2017;506:122–32.

    Article  CAS  Google Scholar 

  26. Mahanthesh B, Gireesha BJ, Shehzad SA, Rauf A, Sampathkumar PB. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Physica B Condens Matter. 2018;537:98–104.

    Article  CAS  Google Scholar 

  27. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2019;135:283–303.

    Article  CAS  Google Scholar 

  28. Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135:763–86.

    Article  CAS  Google Scholar 

  29. Qureshi MZA, Ashraf M. Computational analysis of nanofluids: a review. Eur Phys J Plus. 2018;133:1–22.

    Article  Google Scholar 

  30. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  31. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—Part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M. Application of control volume based finite element method (CVFEM) for nanofluid flow and heat transfer. Amsterdam: Elsevier; 2019 ISBN: 9780128141526.

    Google Scholar 

  33. Moallemi MK, Jang KS. Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf. 1992;35:1881–92.

    Article  CAS  Google Scholar 

  34. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;446:3639–53.

    Article  Google Scholar 

Download references

Acknowledgements

The second author acknowledges the financial support from the Ministry of Education and Science of the Russian Federation (Project No. 13.6542.2017/6.7). Authors also wish to express their thanks to the very competent Reviewers for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Sheremet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Sheremet, M.A., Shafee, A. et al. CVFEM approach for EHD flow of nanofluid through porous medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim 138, 573–581 (2019). https://doi.org/10.1007/s10973-019-08235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08235-3

Keywords

Navigation