Skip to main content
Log in

Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel

A novel mode for heat transfer enhancement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An innovative approach to escalate the heat generation in peristalsis flow of MHD nanofluids filled in an asymmetric channel is proposed. Three different shapes of nanoparticles, namely (1) spherical, (2) disc and (3) cylindrical are utilized. Results for temperature, velocity and concentrations have been obtained analytically. The physical features for heat generation, concentration, pressure gradient, pressure rise and magnetic parameter have been elaborated graphically, whereas effects of Nusselt number and skin friction have been numerically computed by using the MATLAB software. For bolus features, trapping phenomena are also inspected by dint of stream lines. It is found that cylindrical shapes of nanoparticles have very low thermal conductivity as compared to spherical and disc shapes. Moreover, it is seen that the heat generation parameter always increases the temperature of nanofluid, and consequently, the trapping phenomena produce more boluses for larger values of heat source parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Latham TW. Fluid motion in a peristaltic pump. MS. Thesis. Massachusetts Institute of Technology, Cambridge, (1966).

  2. Shapiro AH, Jaffrin MY, Wienberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Article  Google Scholar 

  3. Pandey SK, Chaube MK. Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field. Commun Nonlinear Sci Numer Simul. 2011;16(9):3591–601.

    Article  Google Scholar 

  4. Ebaid A. A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via Adomian decomposition method. Phys Lett A. 2008;372:5321–8.

    Article  CAS  Google Scholar 

  5. Ebaid A. Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Phys Lett A. 2008;372:4493–9.

    Article  CAS  Google Scholar 

  6. Bhatti MM, Abbas MA, Rashidi MM. Combine effects of magnetohydrodynamics (MHD) and partial slip on peristaltic blood flow of Ree-Eyring fluid with wall properties. Eng Sci Technol Int J. 2016;19(3):1497–502.

    Article  Google Scholar 

  7. Mekheimer KS. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A. 2008;372:4271–8.

    Article  CAS  Google Scholar 

  8. Souidi F, Ayachi K, Benyahia N. Entropy generation rate for a peristaltic pump. J Non Equilib Thermodyn. 2009;34:171–94.

    Article  Google Scholar 

  9. Ranjit NK, Shit GC. Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy. 2017;128:649–60.

    Article  Google Scholar 

  10. Zeeshan A, Ijaz N, Abbas T, Ellahi R. The sustainable characteristic of Bio-bi-phase flow of peristaltic transport of MHD Jeffery fluid in human body. Sustainability. 2018;10(8):2671.

    Article  CAS  Google Scholar 

  11. Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry. 2019;11(2):276.

    Article  CAS  Google Scholar 

  12. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows, vol. 66. ASME FED; 1995. p. 99–105.

  13. Ouenzerfi S, Harmand S. Experimental droplet study of inverted Marangoni effect of a binary liquid mixture on a nonuniform heated substrate. Langmuir. 2016;32(10):2378–88.

    Article  CAS  PubMed  Google Scholar 

  14. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo-Christov heat flux model. Phys Lett A. 2019;383:276–81.

    Article  CAS  Google Scholar 

  15. Huang D, Wu Z, Sunden B, Li W. A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Appl Energy. 2016;162:494–505.

    Article  CAS  Google Scholar 

  16. Mishra SR, Bhatti MM. Simultaneous effects of chemical reaction and Ohmic heating with heat and mass transfer over a stretching surface: a numerical study. Chin J Chem Eng. 2017;25(9):1137–42.

    Article  CAS  Google Scholar 

  17. Mishra SR, Pattnaik PK, Bhatti MM, Abbas T. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet. Indian J Phys. 2017;91(10):1219–27.

    Article  CAS  Google Scholar 

  18. Ellahi R, Alamri SZ, Basit A, Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univ Sci. 2018;12(4):476–82.

    Article  Google Scholar 

  19. Maskaniyan M, Nazari M, Rashidi S, Mahian O. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Therm Sci Eng Prog. 2018;6:186–93.

    Article  Google Scholar 

  20. Hajar Yousaf MA, Ismael F, Abbas T, Ellahi R. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation. Heat Transf Res. 2019;50(7):649–58.

    Article  Google Scholar 

  21. Sohail A, Fatima M, Ellahi R, Akram KB. A videographic assessment of Ferrofluid during magnetic drug targeting: an application of artificial intelligence in nanomedicine. J Mol Liq. 2019;285:47–57.

    Article  CAS  Google Scholar 

  22. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    Article  CAS  Google Scholar 

  23. Duursma D, Sefiane K, Dehaene A, Harmand S, Wang Y. Flow and heat transfer of single-and two-phase boiling of nanofluids in microchannels. Heat Transf Eng. 2015;36:1252–65.

    Article  CAS  Google Scholar 

  24. Ellahi R, Zeeshan A, Hussain F, Abbas T. Study of shiny film coating on multi-fluid flows of a rotating disk suspended with nano-sized silver and gold particles: a comparative analysis. Coatings. 2018;8(12):422.

    Article  Google Scholar 

  25. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  26. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, AbuNada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian AB, Pop I. Recent advances in modeling and simulation of nanofluid flows—Part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  27. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei M R, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows. J Therm Anal Calorim. 2018, 1–9.

  28. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.

    Article  CAS  Google Scholar 

  29. Majka TM, Raftopoulos KN, Pielichowski K. The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim. 2018;133(1):289–301.

    Article  CAS  Google Scholar 

  30. Khan I, Khan WA. Effect of viscous dissipation on MHD water-Cu and EG-Cu nanofluids flowing through a porous medium. J Therm Anal Calorim. 2019;135(1):645–56.

    Article  CAS  Google Scholar 

  31. Saqib M, Ali F, Khan I, Sheikh NA, Shafie SB. Convection in ethylene glycol-based molybdenum disulfide nanofluid. J Therm Anal Calorim. 2019;135(1):523–32.

    Article  CAS  Google Scholar 

  32. Khan I. New idea of Atangana and Baleanu fractional derivatives to human blood flow in nanofluids. Chaos. 2019;29(1):013121.

    Article  PubMed  Google Scholar 

  33. Saqib M, Khan I, Shafie S. Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv Differ Equ. 2019;2019:52.

    Article  Google Scholar 

  34. Akbar NS, Raza M, Ellahi R. Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 2015;5:115–24.

    Article  Google Scholar 

  35. Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton Crosser model. J Nanoparticle Res. 2004;6:355–61.

    Article  Google Scholar 

  36. Halelfadl S, Mare T, Estelle P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp Therm Fluid Sci. 2014;53:104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahmat Ellahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, L.A., Raza, M., Mir, N.A. et al. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim 140, 879–890 (2020). https://doi.org/10.1007/s10973-019-08348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08348-9

Keywords

Navigation