Skip to main content
Log in

Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, CuAl13−xTax (% mass x = 1; 1.5; 2; 2.5) shape-memory alloys were produced through arc-melting method. Phase transformation temperatures were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis. Microstructures were examined with the aid of optical microscopy, scanning electron microscopy–energy-dispersive X-ray (SEM–EDX) and X-ray diffraction (XRD). The ratios of electron per atom (e/a) for CuAl13−xTa1, CuAl13−xTa1.5, CuAl13−xTa2 and CuAl13−xTa2.5 were calculated as 1.52, 1.51, 1.50 and 1.49, respectively. DSC results showed that CuAlTa alloys belong to high-temperature shape-memory alloys. Also, it was identified that these alloys demonstrate \(2{\text{H}}(\upgamma_{1}^{\prime } ) \to {\text{DO}}_{3} (\upbeta_{1} ) \to 18{\text{R}}(\upbeta_{1}^{\prime } )\) phase transformation. It was observed that both phase transformation temperature and oxidation sensitivity of the samples decreased with the increase in the amount of Ta. In the XRD analysis of CuAlTa HTSMA alloys, some phases were observed, including \(\upgamma^{\prime } ,\;\upbeta^{\prime }\) Cu9Al4, CuAl and Ta2Al3. These phases were supported by SEM–EDX results. The micro-hardness values of the alloys were increased by increasing Ta content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Addington M, Schodek D. Smart materials and technologies in architecture: for the architecture and design professions. London: Routledge; 2012.

    Book  Google Scholar 

  2. Dagdelen F, et al. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. Eur Phys J Plus. 2019;134(2):66.

    Article  Google Scholar 

  3. Qader IN, Kök M, Dağdelen F. Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu–Al–Ni–Hf) shape memory alloy. Phys B Condens Matter. 2019;553:1–5.

    Article  CAS  Google Scholar 

  4. Kajiwara S. Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng, A. 1999;273:67–88.

    Article  Google Scholar 

  5. Alaneme KK, Okotete EA. Reconciling viability and cost-effective shape memory alloy options—a review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J. 2016;19(3):1582–92.

    Article  Google Scholar 

  6. Melton K. Ni–Ti based shape memory alloys. Eng Asp Shape Mem Alloys. 1990;344:21–5.

    Article  Google Scholar 

  7. Lexcellent C. Shape-memory alloys handbook. New York: Wiley; 2013.

    Book  Google Scholar 

  8. Tang S, Chung C, Liu W. Preparation of CuAlNi-based shape memory alloys by mechanical alloying and powder metallurgy method. J Mater Process Technol. 1997;63(1–3):307–12.

    Article  Google Scholar 

  9. Wang C, et al. A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct. 2013;23(2):025018.

    Article  Google Scholar 

  10. Manzoni A, et al. Shape recovery in high temperature shape memory alloys based on the Ru–Nb and Ru–Ta systems. In: European symposium on martensitic transformations. EDP Sciences. 2009.

  11. Van Humbeeck J, Stalmans R. Shape memory alloys, types and functionalities. In: Encyclopedia of smart materials. 2002.

  12. Miura S, Morita Y, Nakanishi N. Superelasticity and shape memory effect in Cu–Sn alloys. In: Shape memory effects in alloys. Berlin: Springer; 1975. p. 389–405.

    Chapter  Google Scholar 

  13. Ahlers M. Martensite and equilibrium phases in Cu–Zn and Cu–Zn–Al alloys. Prog Mater Sci. 1986;30(3):135–86.

    Article  CAS  Google Scholar 

  14. Perkins J. Shape memory effects in alloys. Berlin: Springer; 2012.

    Google Scholar 

  15. Duerig TW, Melton K, Stöckel D. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 2013.

    Google Scholar 

  16. Duerig TW, Albrecht J, Gessinger GH. A shape-memory alloy for high-temperature applications. JOM. 1982;34(12):14–20.

    Article  CAS  Google Scholar 

  17. Sutou Y, et al. Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater Sci Eng, A. 2004;378(1):278–82.

    Article  Google Scholar 

  18. Raju T, Sampath V. Influence of aluminium and iron contents on the transformation temperatures of Cu–Al–Fe shape memory alloys. Trans Indian Inst Met. 2011;64(1–2):165.

    Article  CAS  Google Scholar 

  19. Schick JR, Hartl DJ, Lagoudas DC. Incorporation of shape memory alloy actuators into morphing aerostructures. In: Morphing aerospace vehicles and structures. 2012. p. 231-260.

    Chapter  Google Scholar 

  20. Ionaitis R, Kotov V, Shchukin I. Application of shape-memory alloys in nuclear power. At Energy. 1995;79(4):712–4.

    Article  Google Scholar 

  21. Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng. 2007;221(4):535–52.

    Article  CAS  Google Scholar 

  22. Adorno A, Silva R. Effect of Ag additions on the reverse martensitic transformation in the Cu–10 mass% Al alloy. J Therm Anal Calorim. 2006;83(1):241–6.

    Article  CAS  Google Scholar 

  23. Tadaki T. Cu-based shape memory alloys. In: Shape memory materials. 1998. p. 97–116.

  24. Yang S, et al. Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys. J Mater Sci. 2017;52(10):5917–27.

    Article  CAS  Google Scholar 

  25. Cenoz I, Gutierrez M. Phase transformations in Cu–Al alloy. Met Sci Heat Treat. 2011;53(5–6):265–9.

    Article  CAS  Google Scholar 

  26. Aydoğdu Y, et al. Thermal properties, microstructure and microhardness of Cu–Al–Co shape memory alloy system. Trans Indian Inst Met. 2014;67(4):595–600.

    Article  Google Scholar 

  27. Silva R, et al. Characteristics of the Cu–18.84 at.% Al–10.28 at.% Mn–1.57 at.% Ag alloy after slow cooling from high temperatures. J Therm Anal Calorim. 2015;121(3):1233–8.

    Article  CAS  Google Scholar 

  28. Salzbrenner R, Cohen M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979;27(5):739–48.

    Article  CAS  Google Scholar 

  29. Kök M, Aydoğdu Y. Effect of composition on the thermal behavior of NiMnGa alloys. J Therm Anal Calorim. 2013;113(2):859–63.

    Article  Google Scholar 

  30. Malkoc T, Dagdelen F. Production of CoAl and CoAlCr FSMAs and determination of their thermal, microstructure, and magnetic properties. J Therm Anal Calorim. 2019;135:1–6.

    Article  Google Scholar 

  31. Yildiz K, Kök M, Dağdelen F. Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys. J Therm Anal Calorim. 2015;120(2):1227–32.

    Article  CAS  Google Scholar 

  32. Kwarciak J, Bojarski Z, Morawiec H. Phase transformation in martensite of Cu–12.4% Al. J Mater Sci. 1986;21(3):788–92.

    Article  CAS  Google Scholar 

  33. Liu X, et al. Phase equilibria in the Cu-rich portion of the Cu–Al binary system. J Alloys Compd. 1998;264(1–2):201–8.

    Article  CAS  Google Scholar 

  34. Prashantha S, Mallikarjun U, Shashidhara S. Effect of ageing on shape memory effect and transformation temperature on Cu–Al–Be shape memory alloy. Procedia Mater Sci. 2014;5:567–74.

    Article  CAS  Google Scholar 

  35. Soliman H, Habib N. Effect of ageing treatment on hardness of Cu–12.5 wt% Al shape memory alloy. Indian J Phys. 2014;88(8):803–12.

    Article  CAS  Google Scholar 

  36. Dagdelen F, Ercan E. The surface oxidation behavior of Ni–45.16%Ti shape memory alloys at different temperatures. J Therm Anal Calorim. 2014;115(1):561–5.

    Article  CAS  Google Scholar 

  37. Saud SN, et al. Effect of Ta additions on the microstructure, damping, and shape memory behaviour of prealloyed Cu–Al–Ni shape memory alloys. Scanning. 2017. https://doi.org/10.1155/2017/1789454.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Silva R, et al. Investigation of thermal, mechanical and magnetic behaviors of the Cu–11% Al alloy with Ag and Mn additions. Mater Character. 2013;75:194–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Firat University Research Project Unit under Project No FF. 16.41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dagdelen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercan, E., Dagdelen, F. & Qader, I.N. Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. J Therm Anal Calorim 139, 29–36 (2020). https://doi.org/10.1007/s10973-019-08418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08418-y

Keywords

Navigation