Skip to main content
Log in

Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the heat transfer and hydrodynamic analysis of flow through single-pipe heat exchangers of circular and square cross-sectional configurations were performed. The experimental and numerical investigations were conducted to evaluate the performance of two metallic oxides (Al2O3 and SiO2) and two carbon-based nanostructured nanofluids (KRG and GNP) in comparison with the distilled water (DW). The data obtained from the experimental runs with DW as a working fluid in both test sections were used to validate the 3-D numerical models for the square and circular pipe heat exchangers. The flow in both test sections is considered as a fully developed turbulent flow with the Reynolds number range of 6000–11,000, and both the test sections were subjected to a uniform heat flux at their outer surfaces. The concentrations of all nanofluids used in the present study were in the range of (0.025–0.1 mass%). The test rig was firstly validated during the water run by using different empirical correlations for the evaluation of pressure drop and Nusselt number and showing a very good agreement, and then, the numerical models were validated with the data obtained experimentally and the errors were less than 10% for both models. For the square tube flow, the average errors between the numerical and experimental findings of Nusselt number and pressure drop were 6.8% and 2.49%, respectively, and for the circular pipe flow, the evaluated errors were 9.34% and 5.92% for Nusselt number and pressure drop, respectively. The performance index for all the nanofluids was calculated to obtain the convective heat transfer coefficients and friction losses of the fluids in both the tubes. The results showed that the non-covalent graphene–DW is not suitable for heat transfer applications due to its higher viscosity. The results also showed a different enhancement of heat transfer for the same nanofluid in circular and square tube flows, whereas the performance index of the same nanofluid appears nearly the same for flow through both the cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminium oxide

A c :

Cross-sectional area (m2)

A s :

Total heat transfer surface area (m2)

C f :

Friction coefficient

C p :

Specific heat (kJ kg−1 K−1)

D :

Nominal diameter of circular tube (mm)

D h :

Hydraulic tube diameter [4Ac/p (m)]

D ins :

Diameter of insulation layer (mm)

d p :

Nanoparticle diameter (µm)

DW:

Distilled water

f :

Friction factor

H :

Head produced by the pump (m)

h :

Convection heat transfer coefficient (W m−2 K−1)

I :

Current (A)

K :

Thermal conductivity (W m−1 K−1)

k :

Turbulent kinetic energy

L :

Tube computational length (mm)

L S :

Side length of square tube (m)

Nu :

Nusselt number

P :

Pressure (Pa)

p :

Perimeter (m)

Pr :

Prandtl number

q :

Heat transfer rate (W)

q″:

Heat flux (W m−2)

Re :

Reynolds number

SiO2 :

Silicon oxide

T :

Temperature (K)

T b :

Fluid bulk temperature (K)

T in :

Inlet temperature (K)

T o :

Outlet temperature (K)

T w :

Tube wall temperature (K)

u :

Velocity component in x direction (m s−1)

v :

Velocity component in y direction (m s−1)

V :

Mean flow velocity (m s−1)

ΔV :

Voltage difference (V)

\(\dot{V}\) :

Volume flow rate (m3)

\(\dot{W}\) :

Hydraulic pumping power (W)

α th :

Thermal diffusivity of the fluid (m2 s−1)

\(\gamma\) :

Specific mass of the fluid (N m−3)

ε :

Turbulent dissipation rate (m2 s−2)

ν :

Momentum diffusivity or kinematic viscosity (m2 s−1)

φ :

Nanoparticle volume fraction (%)

μ :

Dynamic viscosity (N m s−1)

µ t :

Eddy viscosity (N m s−1)

τ :

Shear stress (Pa)

ρ :

Density (kg m−3)

ω :

Nanoparticle mass concentration

b:

Bulk

bf:

Base fluid

cr:

Circular

in:

Inlet

ins:

Insulation

nf:

Nanofluid

o:

Outlet

s:

Solid

sq:

Square

t:

Turbulence

th:

Thermal

f:

Fluid

p:

Particles

w:

Wall

References

  1. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  2. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  3. Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6(1):229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52(13–14):3187–96.

    Article  CAS  Google Scholar 

  5. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11(3):512–23.

    Article  CAS  Google Scholar 

  6. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  7. Wen D, et al. Review of nanofluids for heat transfer applications. Particuology. 2009;7(2):141–50.

    Article  CAS  Google Scholar 

  8. Yu W, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  9. Pendyala R, Chong JL, Ilyas SU. CFD analysis of heat transfer performance in a car radiator with nanofluids as coolants. Chem Eng Trans. 2015;45:1261–6.

    Google Scholar 

  10. Vajjha RS, Das DK, Ray DR. Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. Int J Heat Mass Transf. 2015;80:353–67.

    Article  CAS  Google Scholar 

  11. Hussein AM, et al. The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. J Nanomater. 2013;2013:12.

    Article  CAS  Google Scholar 

  12. Delavari V, Hashemabadi SH. CFD simulation of heat transfer enhancement of Al2O3/water and Al2O3/ethylene glycol nanofluids in a car radiator. Appl Therm Eng. 2014;73(1):380–90.

    Article  CAS  Google Scholar 

  13. Mohanrajhu N, Purushothaman K, Kulasekharan N. Numerical heat transfer and pressure drop studies of turbulent Al2O3—ethylene glycol/water nanofluid flow in an automotive radiator tube. Appl Mech Mater. 2015;787:152–6.

    Article  Google Scholar 

  14. Elsebay M, et al. Numerical resizing study of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Appl Math Model. 2016;40(13):6437–50.

    Article  Google Scholar 

  15. Hussein AM, et al. Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system. Case Stud Therm Eng. 2017;9:72–8.

    Article  Google Scholar 

  16. Ozbolat V, Sahin B. Numerical investigations of heat transfer enhancement of water-based Al2O3 nanofluids in a sinusoidal-wall channel. In: ASME 2013 international mechanical engineering congress and exposition. Volume 8A: Heat Transfer and Thermal Engineering (56345); 2013. p. V08AT09A051.

  17. Khoshvaght-Aliabadi M, Rad SEH, Hormozi F. Al2O3–water nanofluid inside wavy mini-channel with different cross-sections. J Taiwan Inst Chem Eng. 2016;58:8–18.

    Article  CAS  Google Scholar 

  18. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35(5):657–65.

    Article  CAS  Google Scholar 

  19. Izadi M, Behzadmehr A, Jalali-Vahida D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int J Therm Sci. 2009;48(11):2119–29.

    Article  CAS  Google Scholar 

  20. Togun H, et al. Numerical simulation of heat transfer and separation Al2O3/nanofluid flow in concentric annular pipe. Int Commun Heat Mass Transf. 2016;71:108–17.

    Article  CAS  Google Scholar 

  21. Hu Y, et al. Natural convection in a nanofluid-filled eccentric annulus with constant heat flux wall: a lattice Boltzmann study with immersed boundary method. Int Commun Heat Mass Transf. 2017;86:262–73.

    Article  CAS  Google Scholar 

  22. Hosseini M, et al. Numerical study of turbulent heat transfer of nanofluids containing eco-friendly treated carbon nanotubes through a concentric annular heat exchanger. Int J Heat Mass Transf. 2018;127:403–12.

    Article  CAS  Google Scholar 

  23. Hafezisefat P, Esfahany MN, Jafari M. Erratum to: An experimental and numerical study of heat transfer in jacketed vessels by SiO2 nanofluid. Heat Mass Transf. 2017;53(7):2407.

    Article  Google Scholar 

  24. Benkhedda M, Boufendi T, Touahri S. Laminar mixed convective heat transfer enhancement by using Ag–TiO2–water hybrid Nanofluid in a heated horizontal annulus. Heat Mass Transf. 2018;54(9):2799–814.

    Article  CAS  Google Scholar 

  25. Rostamani M, et al. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int Commun Heat Mass Transf. 2010;37(10):1426–31.

    Article  CAS  Google Scholar 

  26. Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304–21.

    Article  CAS  Google Scholar 

  27. Barik AK, Satapathy PK, Sahoo SS. CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nanofluid. Sādhanā. 2016;41(7):795–804.

    Article  CAS  Google Scholar 

  28. Khoshvaght-Aliabadi M, Arani-Lahtari Z. Proposing new configurations for twisted square channel (TSC): nanofluid as working fluid. Appl Therm Eng. 2016;108:709–19.

    Article  CAS  Google Scholar 

  29. Hussain S, et al. Double diffusive nanofluid flow in a duct with cavity heated from below. Int J Mech Sci. 2017;131–132:535–45.

    Article  Google Scholar 

  30. Izadi M, et al. Mixed convection of a nanofluid in a three-dimensional channel. J Therm Anal Calorim. 2019;136(6):2461–75.

    Article  CAS  Google Scholar 

  31. Qi C, Yang L, Wang G. Numerical study on convective heat transfer enhancement in horizontal rectangle enclosures filled with Ag–Ga nanofluid. Nanoscale Res Lett. 2017;12(1):326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jalali H, Abbassi H. Numerical investigation of heat transfer by Al2O3–water nanofluid in square cavity. In: Design and modeling of mechanical systems—III. Cham: Springer; 2018.

  33. Li Q, Xuan Y. Convective heat transfer and flow characteristics of Cu–water nanofluid. Sci China Ser E Technol Sci. 2002;45(4):408–16.

    Article  CAS  Google Scholar 

  34. Fotukian SM, Esfahany MN. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf. 2010;37(2):214–9.

    Article  CAS  Google Scholar 

  35. Sajadi AR, Kazemi MH. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. Int Commun Heat Mass Transf. 2011;38(10):1474–8.

    Article  CAS  Google Scholar 

  36. Hemmat-Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluids Sci. 2014;52:68–78.

    Article  CAS  Google Scholar 

  37. Sadeghinezhad E, et al. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Ind Eng Chem Res. 2014;53(31):12455–65.

    Article  CAS  Google Scholar 

  38. Li Y, et al. Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow. Appl Therm Eng. 2016;93:537–48.

    Article  CAS  Google Scholar 

  39. Praveena Devi N, Srinivasa Rao C, Kiran Kumar K. Numerical and experimental studies of nanofluid as a coolant flowing through a circular tube. In: Numerical heat transfer and fluid flow. Singapore: Springer; 2019.

  40. El Bécaye Maïga S, Tam Nguyen C, Galanis N, Roy G, Maré T, Coqueux M. Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. Int J Numer Methods Heat Fluid Flow. 2006;16(3):275–92.

    Article  Google Scholar 

  41. Shaikh S, Lafdi K. Thermal conductivity improvement in carbon nanoparticle doped PAO oil: an experimental study. J Appl Phys. 2007;101:7.

    Article  CAS  Google Scholar 

  42. Bianco V, et al. Numerical investigation of nanofluids forced convection in circular tubes. Appl Therm Eng. 2009;29(17):3632–42.

    Article  CAS  Google Scholar 

  43. Namburu PK, et al. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int J Therm Sci. 2009;48(2):290–302.

    Article  CAS  Google Scholar 

  44. Bianco V, Manca O, Nardini S. Numerical simulation of water/Al2O3 nanofluid turbulent convection. Adv Mech Eng. 2010;2:976254.

    Article  CAS  Google Scholar 

  45. Lotfi R, Saboohi Y, Rashidi AM. Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transf. 2010;37(1):74–8.

    Article  CAS  Google Scholar 

  46. Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50(3):341–9.

    Article  CAS  Google Scholar 

  47. Keshavarz Moraveji M, Hejazian M. Modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid with computational fluid dynamics. Int Commun Heat Mass Transf. 2012;39(8):1293–6.

    Article  CAS  Google Scholar 

  48. Naik MT, Vojkani E, Ravi G. Numerical investigation of turbulent flow and heat transfer characteristics of PGW–CuO nanofluids. Int J Min Metall Mech Eng (IJMMME). 2013;2:141–5.

    Google Scholar 

  49. Hejazian M, Moraveji MK, Beheshti A. Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube. Int Commun Heat Mass Transf. 2014;52:152–8.

    Article  CAS  Google Scholar 

  50. Saha G, Paul MC. Numerical analysis of the heat transfer behaviour of water based Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int Commun Heat Mass Transf. 2014;56:96–108.

    Article  CAS  Google Scholar 

  51. Abdelrazek AH, et al. A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop. Int Commun Heat Mass Transf. 2018;95:161–70.

    Article  CAS  Google Scholar 

  52. Sadri R, et al. CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: comparison with experimental data. J Mol Liq. 2018;269:152–9.

    Article  CAS  Google Scholar 

  53. Ghozatloo A, Rashidi A, Shariaty-Niassar M. Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Thermal Fluid Sci. 2014;53:136–41.

    Article  CAS  Google Scholar 

  54. Arzani HK, et al. Experimental and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized graphene nanoplatelet-based water nanofluids in an annular heat exchanger. Int Commun Heat Mass Transf. 2015;68:267–75.

    Article  CAS  Google Scholar 

  55. Incropera FP. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.

    Google Scholar 

  56. Taylor JR. An introduction to error analysis: the study of uncertainties in physical measurements. New York: University Science Books; 1997.

    Google Scholar 

  57. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  58. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  59. Launder BE, Spalding DB. Lectures in mathematical models of turbulence. London: Academic; 1972.

    Google Scholar 

  60. Gnielinski V. Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forsch Ingenieurwesen A. 1975;41(1):8–16.

    Article  CAS  Google Scholar 

  61. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. In: Hartnett JP, Irvine TF, editors. Advances in heat transfer. London: Elsevier; 1970. p. 503–64.

    Google Scholar 

  62. Duan Z, Yovanovich MM, Muzychka YS. Pressure drop for fully developed turbulent flow in circular and noncircular ducts. J Fluids Eng. 2012;134(6):061201–061201-10.

    Article  Google Scholar 

  63. Incropera FP, DeWitt DP. Fundamentals of heat and mass transfer. 5th ed. New York: Wiley; 2002.

    Google Scholar 

  64. Taler D. Determining velocity and friction factor for turbulent flow in smooth tubes. Int J Therm Sci. 2016;105:109–22.

    Article  Google Scholar 

  65. Cengel YA. Heat and mass transfer: a practical approach. Bengaluru: McGraw-Hill; 2007.

    Google Scholar 

  66. Diessler RG. Analysis of turbulent heat transfer and flow in the entrance regions of smooth passages. New York: National Advisory Committee for Aeronautics: United States; 1953. p. 88.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Malaya Research Grant (UMRG: RP045C-17AET) and the University of Malaya Postgraduate Research Grant (PPP: PG 104-2016A) for support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali H. Abdelrazek or S. N. Kazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrazek, A.H., Kazi, S.N., Alawi, O.A. et al. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim 139, 1637–1653 (2020). https://doi.org/10.1007/s10973-019-08562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08562-5

Keywords

Navigation