Skip to main content
Log in

Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, we have reinvestigated the thermal degradation kinetics of synthetic gypsum (CaSO4·2H2O) using a novel approach based on peak deconvolution followed by the application of Model-Free isoconversional method. Gypsum was prepared using wet chemical route and characterized by conventional X-ray diffraction, in situ high-temperature X-ray diffraction (HT-XRD), infrared spectroscopy (IRTF-ATR), simultaneous thermal gravimetry, and differential thermal technique (TG/DTA). The physicochemical analysis showed that gypsum thermally degrades into calcium sulfate anhydrite (γ-CaSO4; anhydrite III) via an intermediate phase formed by calcium hemihydrate (CaSO4·0.5H2O; bassanite). HT-XRD analyses revealed the difference between the bassanite and anhydrite III phases, although they have a similar structure. The thermal kinetics of gypsum indicated a complex behavior of overall process mechanism consisting of overlapping contributions, which were separated into two individual ones using a mathematical deconvolution of Fraser Suzuki function. The separate thermal processes were analyzed using Model-Free isoconversional and Malek’s methodology. The kinetic results showed that both processes may be represented by Johnson–Mehl–Avrami [JMA(n)] equation which corresponds to nucleation and growth mechanisms, with n > 1. The first process corresponding to the partial dehydration of gypsum into bassanite was carried out by a two-dimensional JMA mechanism, while the second process, attributed to the complete dehydration of gypsum, was performed according to a three-dimensional JMA. Calculations of thermodynamic parameters have shown that the dehydration process of gypsum is accompanied by endothermic effects and requires heat, in agreement with the thermal analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scheinherrová L, Doleželová M, Havlín J, Trník A. Thermal analysis of ternary gypsum-based binders stored in different environments. J Therm Anal Calorim. 2018;133:177–88.

    Google Scholar 

  2. Wang J, Yang P. Potential flue gas desulfurization gypsum utilization in agriculture: a comprehensive review. Renew Sustain Energy Rev. 2018;82:1969–78.

    CAS  Google Scholar 

  3. Yildizel SA. Mechanical performance of glass fiber reinforced composites made with gypsum, expanded perlite, and silica sand. Roman J Mater. 2018;48:229–35.

    CAS  Google Scholar 

  4. Zhang Q, Ma P, Yang Y, Pan X, Zhang J, Xiang L. Reinforcement of recycled paint slag hybrid-filled lightweight calcium sulphate whisker/PVC foam composites. J Environ Chem Eng. 2018;6:520–6.

    CAS  Google Scholar 

  5. Gorbovskiy KG, Ryashko AI, Kazakov AI, Norov AM, Mikhaylichenko AI. The influence of water-soluble impurities on thermal dehydration kinetics of phosphogypsum in self-generated atmosphere. J Therm Anal Calorim. 2018;133:1549–62.

    CAS  Google Scholar 

  6. Comodi P, Kurnosov A, Nazzareni S, Dubrovinsky L. The dehydration process of gypsum under high pressure. Phys Chem Miner. 2012;39:65–71.

    CAS  Google Scholar 

  7. McAdie HG. The effect of water vapor upon the dehydration of CaSO4·2H2O. Can J Chem. 1964;42:792–801.

    CAS  Google Scholar 

  8. Badens E, Llewellyn P, Fulconis JM, Jourdan C, Veesler S, Boistelle R, Rouquerol F. Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J Solid State Chem. 1998;139:37–44.

    CAS  Google Scholar 

  9. Carbone M, Ballirano P, Caminiti R. Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur J Mineral. 2008;20:621–7.

    CAS  Google Scholar 

  10. Kontogeorgos DA, Founti MA. Gypsum board dehydration kinetics at autogenous water vapour partial pressure. Thermochim Acta. 2012;545:141–7.

    CAS  Google Scholar 

  11. Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104:661–9.

    CAS  Google Scholar 

  12. Arii T, Fujii N. Controlled-rate thermal analysis kinetic study in thermal dehydration of calcium sulfate dihydrate. J Anal Appl Pyrolysis. 1997;39:129–43.

    CAS  Google Scholar 

  13. Ball MC, Norwood LS. Studies in the system calcium sulphate–water. Part I. Kinetics of dehydration of calcium sulphate dihydrate. J Chem Soc A. 1969;1:1633–7.

    Google Scholar 

  14. Ballirano P, Melis E. Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Miner. 2009;36:391–402.

    CAS  Google Scholar 

  15. Strydom CA, Potgieter JH. Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochim Acta. 1999;332:89–96.

    CAS  Google Scholar 

  16. Strydom CA, Hudson-Lamb DL, Potgieter JH, Dagg E. The thermal dehydration of synthetic gypsum. Thermochim Acta. 1995;269–270:631–8.

    Google Scholar 

  17. Hudson-Lamb DL, Strydom CA, Potgieter JH. The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochim Acta. 1996;282–283:483–92.

    Google Scholar 

  18. Putnis A, Winkler B, Fernandez-Diaz L. In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineral Mag. 1990;54:123–8.

    CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  20. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    CAS  Google Scholar 

  21. Moine EC, Tangarfa M, Khachani M, El Hamidi A, Halim M, Arsalane S. Thermal oxidation study of Moroccan oil shale: a new approach to non-isothermal kinetics based on deconvolution procedure. Fuel. 2016;180:529–37.

    CAS  Google Scholar 

  22. Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron(III) phosphate dihydrate FePO4·2H2O. Thermochim Acta. 2015;610:29–36.

    CAS  Google Scholar 

  23. Song X, Zhang L, Zhao J, Xu Y, Sun Z, Li P, Yu J. Preparation of calcium sulfate whiskers using waste calcium chloride by reactive crystallization. Cryst Res Technol. 2011;46:166–72.

    CAS  Google Scholar 

  24. Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244:1–20.

    CAS  Google Scholar 

  25. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    CAS  PubMed  Google Scholar 

  26. Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: a view from a historical perspective. Int Rev Phys Chem. 2000;19:45–60.

    CAS  Google Scholar 

  27. Koga N, Šesták J, Šimon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. Therm Anal Micro, Nano-Non-Cryst Mater Hot Top Therm Anal Calorim. 2012;9:1–28.

    Google Scholar 

  28. Malek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    CAS  Google Scholar 

  29. Deng C, Cai J, Liu R. Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications. Solid State Sci. 2009;11:1375–9.

    CAS  Google Scholar 

  30. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    CAS  Google Scholar 

  31. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. J Phys Chem B. 2011;115:1780–91.

    PubMed  Google Scholar 

  32. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Thermal stability of multiferroic BiFeO3: kinetic nature of the β–γ transition and peritectic decomposition. J Phys Chem C. 2014;118:26387–95.

    Google Scholar 

  33. Bernard S, Fiaty K, Cornu D, Miele P, Laurent P. Kinetic modeling of the polymer-derived ceramics route: investigation of the thermal decomposition kinetics of poly[B-(methylamino)borazine] precursors into boron nitride. J Phys Chem B. 2006;110:9048–60.

    CAS  PubMed  Google Scholar 

  34. Janković B, Manić N, Stojiljković D, Jovanović V. TSA-MS characterization and kinetic study of the pyrolysis process of various types of biomass based on the Gaussian multi-peak fitting and peak-to-peak approaches. Fuel. 2018;234:447–63.

    Google Scholar 

  35. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Google Scholar 

  36. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  37. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    CAS  Google Scholar 

  38. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    CAS  Google Scholar 

  39. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107–15.

    CAS  Google Scholar 

  40. Kolaitis DI, Founti MA. Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire. Fire Saf J. 2013;58:151–9.

    CAS  Google Scholar 

  41. Engbrecht DC, Hirschfeld DA. Thermal analysis of calcium sulfate dihydrate sources used to manufacture gypsum wallboard. Thermochim Acta. 2016;639:173–85.

    CAS  Google Scholar 

  42. Bezou C, Nonat A, Mutin JC, Christensen AN, Lehmann MS. Investigation of the crystal structure of γ-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods. J Solid State Chem. 1995;117:165–76.

    CAS  Google Scholar 

  43. Christensen AN, Olesen M, Cerenius Y, Jensen TR. Formation and transformation of five different phases in the CaSO4 − H2O system: crystal structure of the subhydrate β-CaSO4·0.5H2O and soluble anhydrite CaSO4. Chem Mater. 2008;20:2124–32.

    CAS  Google Scholar 

  44. Tang Y, Gao J, Liu C, Chen X, Zhao Y. Dehydration pathways of gypsum and the rehydration mechanism of soluble anhydrite γ-CaSO4. J Am Chem Soc. 2019;4:7636–42.

    CAS  Google Scholar 

  45. Morris RJ. Infrared spectrophotometric analysis of calcium sulfate hydrates using internally standardized mineral oil mulls. Anal Chem. 1963;35:1489–92.

    CAS  Google Scholar 

  46. Mandal PK, Mandal TK. Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cem Concr Res. 2002;32:313–6.

    CAS  Google Scholar 

  47. Saito T. Some observations on the process of dehydration and rehydration of gypsum by means of proton magnetic resonance. Bull Chem Soc Jpn. 1961;34:1454–7.

    CAS  Google Scholar 

  48. Prasad PSR, Chaitanya VK, Prasad KS, Rao DN. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am Mineral. 2005;90:672–8.

    CAS  Google Scholar 

  49. Robertson K, Bish D. Constraints on the distribution of CaSO4·nH2O phases on Mars and implications for their contribution to the hydrological cycle. Icarus. 2013;223:407–17.

    CAS  Google Scholar 

  50. Ballirano P, Melis E. Thermal behaviour and kinetics of dehydration in air of bassanite, calcium sulphate hemihydrate (CaSO4·0.5H2O), from X-ray powder diffraction. Eur J Mineral. 2009;21:985–93.

    CAS  Google Scholar 

  51. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, Chen J, Laghari M, Fazal S, Xiao B, Zhang B, Ma S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers Manag. 2016;118:1–11.

    CAS  Google Scholar 

  52. Moine EC, Groune K, El Hamidi A, Khachani M, Halim M, Arsalane S. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale. Energy. 2016;115:931–41.

    CAS  Google Scholar 

  53. Borrachero M, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials. J Therm Anal Calorim. 2008;91:503–9.

    CAS  Google Scholar 

  54. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    CAS  Google Scholar 

  55. Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208:1592–7.

    CAS  Google Scholar 

  56. Fukami T, Tahara S, Nakasone K, Yasuda C. Synthesis, crystal structure, and thermal properties of CaSO4·2H2O single crystals. Int J Chem. 2015;15:12–20.

    Google Scholar 

  57. López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012;109:1177–83.

    Google Scholar 

  58. Sarma LP, Prasad PSR, Ravikumar N. Raman spectroscopic study of phase transitions in natural gypsum. J Raman Spectrosc. 1998;29:851–6.

    CAS  Google Scholar 

  59. Kontogeorgos DA, Founti MA. Gypsum board reaction kinetics at elevated temperatures. Thermochim Acta. 2012;529:6–13.

    CAS  Google Scholar 

  60. Shannon RD. Activated complex theory applied to the thermal decomposition of solids. Trans Faraday Soc. 1964;60:1902–13.

    CAS  Google Scholar 

  61. Cordes HF. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.

    CAS  Google Scholar 

  62. Chen Z, Chai Q, Liao S, Chen X, He Y, Li Y, Wu W, Li B. Nonisothermal kinetic study: IV. Comparative methods to evaluate Ea for thermal decomposition of KZn2(PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51:8985–91.

    CAS  Google Scholar 

  63. Vakhlu V, Bassi PS, Mehta SK. Thermoanalytical studies on gypsum dehydration. T Indian Ceram Soc. 1985;44:29–32.

    CAS  Google Scholar 

  64. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    CAS  Google Scholar 

  65. Wada T, Nakano M, Koga N. Multistep kinetic behavior of the thermal decomposition of granular sodium percarbonate: hindrance effect of the outer surface layer. J Phys Chem A. 2015;119:9749–60.

    CAS  PubMed  Google Scholar 

  66. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1533–8.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the staff of the physicochemical analysis platform of the Faculty of Sciences (University Mohammed V-Rabat) for their close collaboration and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane El Hamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hazzat, M., Sifou, A., Arsalane, S. et al. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method. J Therm Anal Calorim 140, 657–671 (2020). https://doi.org/10.1007/s10973-019-08885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08885-3

Keywords

Navigation