Skip to main content
Log in

Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This investigation addresses bioconvection of oxytactic microorganisms in a porous square enclosure by thermal radiation impact. The bioconvection flow and heat transfer in porous media are formulated based on Darcy model of Boussinesq approximation. Appropriate transformations lead to the non-dimensionalized governing partial differential equations. Galerkin finite element method for the resulting equations is computed. The role of relevant parameters on the streamlines, isotherms, isoconcentrations of oxygen and microorganisms and average Nusselt number is analysed in the outputs. It is revealed that the flow intensity of bioconvection is pronounced with larger Rayleigh number and reduced with radiation parameter. Furthermore, the temperature distribution is affected significantly with Rayleigh number. Radiation parameter serves to fasten the heat transfer in the enclosure. Oxygen density is enhanced with Rayleigh number and radiation parameter. The profile of motile isoconcentrations is boosted with Rayleigh number. The stability of microorganisms is improved with the radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b :

Chemotaxis constant, \(m\)

C :

Concentration of oxygen

\(C_{{{\rm{min}}}}\) :

Minimum concentration of oxygen required for microorganisms to be active

\(C_{0}\) :

Concentration at free surface

\(C_{\text{P}}\) :

Specific heat at constant pressure

\(D_{\text{C}}\) :

Diffusivity of oxygen, m2 s−1

\(D_{\text{n}}\) :

Diffusivity of microorganisms, m2 s−1

\(g\) :

Acceleration due to gravity, m s−2

K :

Permeability of the porous medium

\(k^{*}\) :

Mean absorption coefficient

L :

Length of porous cavity, \(m\)

Le:

Lewis number

n :

Number density of motile microorganisms

\(n_{0}\) :

Average density of the microorganism

N :

Dimensionless number density of microorganisms

\({\text{Nu}}_{\text{Y}}\) :

Local Nusselt number

\({\text{Nu}}_{\text{avg}}\) :

Average Nusselt number

\({\text{Nn}}_{\text{Y}}\) :

Local Sherwood number of microorganisms

\({\text{Nn}}_{\text{avg}}\) :

Average Sherwood number of microorganisms

p :

Excess pressure above hydrostatic

Pe:

Peclet number

\(q_{\text{r}}\) :

Radiative heat flux

Ra:

Rayleigh number of porous medium

Rb:

Bioconvection Rayleigh number

Rd:

Radiation parameter

\({\text{Sh}}_{\text{Y}}\) :

Local Sherwood number of oxygen concentration

\({\text{Sh}}_{\text{avg}}\) :

Average Sherwood number of oxygen concentration

T :

Temperature, \({\text{K}}\)

\(T_{\text{H}}\) :

Temperature at hot wall, \({\text{K}}\)

\(T_{\text{C}}\) :

Temperature at cold wall, \({\text{K}}\)

\(T_{\infty }\) :

Ambient temperature, \({\text{K}}\)

u, v :

Velocity components in \(x,y\)-directions, m s−1

\(W_{\text{C}}\) :

Maximum cell swimming speed

\(x,y\) :

Cartesian coordinates, \(m\)

\(X,Y\) :

Dimensionless coordinates

\(\alpha_{\text{m}}\) :

Effective thermal diffusivity of the porous medium, m2 s−1

\(\beta\) :

Volumetric thermal expansion coefficient of water at constant pressure, \({\text{K}}^{ - 1}\)

\(\gamma\) :

Average volume of a microorganism

\(\mu\) :

Dynamic viscosity of the suspension (N s) m−2

\(\nu\) :

Kinematic viscosity, m2 s−1

\(\phi\) :

Dimensionless oxygen concentration

\(\rho\) :

Density of cell, kg m−3

\(\rho_{\text{f}}\) :

Fluid density, kg m−3

\(\psi\) :

Stream function, m2 s−1

\(\Psi\) :

Dimensionless stream function

\(\sigma\) :

Electric conductivity, S m−1

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\(\theta\) :

Dimensionless temperature

\(\chi\) :

Constant

References

  1. Nield DA, Bejan A. Convection in porous media. 3rd ed. New York: Springer; 2013.

    Book  Google Scholar 

  2. Pop I, Ingham DB. Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Oxford: Pergamon; 2001.

    Google Scholar 

  3. Saeid NH, Pop I. Natural convection from a discrete heater in a square cavity filled with a porous medium. J Porous Media. 2005;102(8):55–63.

    Article  Google Scholar 

  4. Varol Y, Oztop HF, Varol A. Free convection in porous media filled right-angle triangular enclosures. Int Commun Heat Mass Transf. 2006;33:1190–7.

    Article  Google Scholar 

  5. Khanafer K, Al-Amiri A, Pop I. Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. Int J Heat Mass Transf. 2008;5(7–8):1613–27.

    Article  Google Scholar 

  6. Alloui Z, Vasseur P. Natural convection in a horizontal annular porous cavity saturated by a binary mixture. Comput Therm Sci Int J. 2011;3(5):407–417.

  7. Belabid J, Cheddadi A. Multicellular flows induced by natural convection in a porous horizontal cylindrical annulus. Phys Chem News. 2013;70:67–71.

    Google Scholar 

  8. Kuznetsov AV. The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur J Mech B/Fluids. 2006;25:223–33.

    Article  Google Scholar 

  9. Kuznetsov AV. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res Lett. 2011;6(100):13.

    Google Scholar 

  10. Hillesdon AJ, Pedley TJ. Bioconvection in suspensions of oxytactic bacteria: linear theory. J Fluid Mech. 1999;324:223–59.

    Article  Google Scholar 

  11. Pedley TJ, Hill NA, Kessler JO. The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J Fluid Mech. 1988;195:223–37.

    Article  CAS  Google Scholar 

  12. Chamkha AJ, Rashad AM, Kameswaran PK, Abdou MMM. Radiation effects on natural bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with streamwise temperature variation. J Nanofluids. 2017;6(2):368–78.

    Article  Google Scholar 

  13. Rashad AM, Chamkha AJ, Mallikarjuna B, Abdou MMM. Mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder. Front Heat Mass Transf (FHMT). 2018;10:21.

    Google Scholar 

  14. Khan WA, Rashad AM, Abdou MMM, Tlili I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur J Mech/B Fluids. 2019;75:133–42.

    Article  Google Scholar 

  15. Rashad AM, Nabwey HA. Gyrotactic mixed bioconvection flow of a nanofluid past a circular cylinder with convective boundary condition. J Taiwan Inst Chem Eng. 2019;99:9–17.

    Article  CAS  Google Scholar 

  16. Mansour MA, Rashad AM, Mallikarjuna B, Hussein AK, Aichouni M, Kolsi L. MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int J Heat Technol. 2019;37(2):433–45.

    Article  Google Scholar 

  17. Yamamoto T. Numerical simulation of the flows of phototactic microalgae suspensions in an illuminated circular channel. J Soc Rheol. 2015;43(3–4):53–62.

    Article  CAS  Google Scholar 

  18. Belabid J, Allali K. Thermo-bioconvection in horizontal porous annulus with the presence of phototactic microorganisms. Int J Eng Sci. 2019;140:17–25.

    Article  Google Scholar 

  19. Balla CS, Haritha C, Kishan N, Rashad AM. Bioconvection in nanofluid-saturated porous square cavity containing oxytactic microorganisms. Int J Numer Meth Heat Fluid Flow. 2019;29(4):1448–65.

    Article  Google Scholar 

  20. Balla CS, Alluguvelli R, Naikoti K, Makinde OD. Effect of chemical reaction on bioconvective flow in oxytactic microorganisms suspended porous cavity. J Appl Comput Mech. 2019. https://doi.org/10.22055/jacm.2019.14811.

    Article  Google Scholar 

  21. Sheremet MA, Pop I. Thermobioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media. 2014;103:191–205.

    Article  CAS  Google Scholar 

  22. Rashad AM, Ahmed SE, Mansour MA. Effects of chemical reaction and thermal radiation on unsteady double diffusive convection in a square enclosure filled with a porous medium with sinusoidal boundary conditions on the bottom. Int J Numer Meth Heat Fluid Flow. 2014;24(5):1124–40.

    Article  Google Scholar 

  23. Balla CS, Kishan N. Finite element analysis of magnetohydrodynamic transient free convection flow of nanofluid over a vertical cone with thermal radiation. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst. 2016;230(3):161–73.

    CAS  Google Scholar 

  24. Balla CS, Kishan N. Radiation effects on unsteady MHD convective heat and mass transfer past a vertical plate with chemical reaction and viscous dissipation. Alex Eng J. 2015;54:661–71.

    Article  Google Scholar 

  25. Nilankush A, Kalidas D, Prabir KK. Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. J Mol Liq. 2016;222:28–37.

    Article  Google Scholar 

  26. Balla CS, Kishan N, Haritha C. Convection in nanofluid-filled porous cavity with heat absorption/generation and radiation. J Thermophys Heat Transfer. 2016;31(3):549–62.

    Google Scholar 

  27. Balla CS, Haritha C, Kishan N. MHD double-diffusive convection in fluid saturated inclined porous cavity with thermal radiation and chemical reaction. J Chem Technol Metall. 2018;53(3):518–36.

    Google Scholar 

  28. Madhu M, Shashikumar NS, Gireesha BJ, Kishan N. Second law analysis of Powell–Eyring fluid flow through an inclined microchannel with thermal radiation. Phys Scr. 2019;94(12):125205.

    Article  CAS  Google Scholar 

  29. Shashikumar NS, Prasannakumara BC, Archana M, Gireesha BJ. Thermodynamics analysis of a Casson nanofluid flow through a porous microchannel in the presence of hydrodynamic slip: a model of solar radiation. J Nanofluids. 2019;8(1):63–72.

    Article  Google Scholar 

  30. Makinde OD, Mahanthesh B, Gireesha BJ, Shashikumar NS, Monaledi RL, Tshehla MS. MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffus Forum. 2018;384:69–79.

    Article  Google Scholar 

  31. Ramesh K, Ojjela O. Entropy generation analysis of natural convective radiative second grade nanofluid flow between parallel plates in a porous medium. Appl Math Mech. 2019;40(4):481–98.

    Article  Google Scholar 

  32. Brewester MQ. Thermal radiative transfer and properties. New York: Willey; 1992.

    Google Scholar 

  33. Magyari E, Pantokratoras A. Note on the effect on the thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transf. 2011;38:554–6.

    Article  Google Scholar 

  34. Balla CS, Alluguvelli R, Naikoti K. Effects of variable viscosity and thermal conductivity on MHD boundary layer flow of nanofluid with thermal radiation. J Nanofluids. 2017;6(1):59–70.

    Article  Google Scholar 

  35. Balla CS, Kishan N. Finite element analysis of natural convective heat transfer in a porous square cavity filled with nanofluids in the presence of thermal radiation. J Phys: Conf Ser. 2015;662:012017.

    Google Scholar 

  36. Balla CS, Kishan N. Finite element analysis of fully developed unsteady MHD convection flow in a vertical rectangular duct with viscous dissipation and heat source/sink. J Appl Sci Eng. 2015;18(2):143–52.

    Google Scholar 

  37. Manole DM, Lage JM. Numerical benchmark results for natural convection in a porous medium cavity. Heat Mass Transf Porous Media ASME Conf. 1992;105:44–59.

    Google Scholar 

  38. Baytas AC, Pop I. Free convection in oblique enclosures filled with a porous medium. Int J Heat Mass Transf. 1999;42:1047–57.

    Article  CAS  Google Scholar 

  39. Revnic C, Grosan T, Pop I, Ingham DB. Free convection in a square cavity filled with a bidisperse porous medium. Int J Therm Sci. 2009;48:1876–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekar Balla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balla, C.S., Ramesh, A., Kishan, N. et al. Bioconvection in oxytactic microorganism-saturated porous square enclosure with thermal radiation impact. J Therm Anal Calorim 140, 2387–2395 (2020). https://doi.org/10.1007/s10973-019-09009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09009-7

Keywords

Navigation