Skip to main content
Log in

Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this investigation, a T-joint numerical welding simulation of thick steel plates is performed to estimate transient temperature distributions, residual stress field and model deflections. A sequential simulation method is applied in the numerical simulation, where the thermal analysis is done by using the EBD technique to simulate the weld wire melting and metal filler addition while the mechanical analysis is performed in one step without EBD to shorten the calculation time. Thermocouples, non-destructive X-ray diffraction and semi-destructive hole-drilling methods are used to measure the temperature and residual stress distributions. In the thermal analysis, a simplified heat flux is used which causes a relatively large temperature discrepancy in the weld pool area between the numerical and experimental results. The calculated temperature histories outside the weld pool and its vicinity correlate very well with the experimental measurements with an acceptable discrepancy of approximately 4%. The residual stresses are firstly measured on the model surface without electropolishing and then two times after that, at depths of 0.005 and 0.015 mm. The results of residual stress obtained by numerical modelling and measurement with X-ray agree better when the electropolishing removing layer is set to 0.015 mm, due to a significantly smaller effect of surface conditions that originate from steel plate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

U :

Welding voltage, V

I :

Welding current, A

Q :

Heat flux, J m−3 s−1

v :

Welding speed, mm/min

h c :

Convective heat transfer coefficient, W m−2 K−1

ε :

Surface emissivity factor

η :

Welding process efficiency

MAG:

Metal active gas

EBD:

Element birth and death

References

  1. Takazawa H, Yanagida N. Effect of creep constitutive equation on simulated stress mitigation behavior of alloy steel pipe during post-weld heat treatment. Int J Press Vessels Pip. 2014;117–118:42–8. https://doi.org/10.1016/j.ijpvp.2013.10.008.

    Article  CAS  Google Scholar 

  2. Perić M, Garašić I, Nižetić S, Dedić-Jandrek H. Numerical analysis of longitudinal residual stresses and deflections in a T-joint welded structure using a local preheating technique. Energies. 2018;11(12):3487. https://doi.org/10.3390/en11123487.

    Article  Google Scholar 

  3. Coules HE, Colegrove P, Cozzolino LD, Wen SW. High pressure rolling of low carbon steel weld seams: part 1—effects on mechanical properties and microstructure. Sci Technol Weld Join. 2013;18(1):63–78. https://doi.org/10.1179/1362171812Y.0000000079.

    Article  CAS  Google Scholar 

  4. Coules HE, Colegrove P, Cozzolino LD, Wen SW, Kelleher JF. High pressure rolling of low carbon steel weld seams: part 2—roller geometry and residual stress. Sci Technol Weld Join. 2013;18(1):84–90. https://doi.org/10.1179/1362171812Y.0000000080.

    Article  CAS  Google Scholar 

  5. Deng D, Liang W, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements. J Mater Process Technol. 2007;183:219–25. https://doi.org/10.1016/j.jmatprotec.2006.10.013.

    Article  CAS  Google Scholar 

  6. Gannon L, Liu Y, Pegg M, Smith M. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates. Effect of welding-induced residual stress and distortion on ship hull girder ultimate strength. Mar Struct. 2010;23(3):375–404. https://doi.org/10.1016/j.marstruc.2010.05.002.

    Article  Google Scholar 

  7. Keivani R, Jahazi M, Pham T, Khodabandeh AR, Afshar MR. Predicting residual stresses and distortion during multisequence welding of large size structures using FEM. Int J Adv Manuf Technol. 2014;73(1–4):409–19. https://doi.org/10.1007/s00170-014-5833-4.

    Article  Google Scholar 

  8. Li Y, Wang K, Jin Y, Xu M, Lu H. Prediction of welding deformation in stiffened structure by introducing thermo-mechanical interface element. J Mater Process Technol. 2015;216:440–6. https://doi.org/10.1016/j.jmatprotec.2014.10.012.

    Article  Google Scholar 

  9. Rong Y, Zhang G, Huang Y. Study of welding distortion and residual stress considering nonlinear yield stress curves and multi-constraint equations. J Mater Eng Perform. 2016;25(10):4484–94. https://doi.org/10.1007/s11665-016-2259-1.

    Article  CAS  Google Scholar 

  10. Perić M, Tonković Z, Rodić A, Surjak M, Garašić I, Boras I, Švaić S. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld. Mater Des. 2014;53:1052–63. https://doi.org/10.1016/j.matdes.2013.08.011.

    Article  CAS  Google Scholar 

  11. Wang C, Kim YR, Kim JW. Comparison of FE models to predict the welding distortion in T-joint gas metal arc welding process. Int J Adv Manuf Technol. 2014;18(8):1637–931. https://doi.org/10.1007/s12541-014-0513-8.

    Article  Google Scholar 

  12. Tian L, Luo Y. A comparison study of BPN and SVM prediction models for inherent deformations of T-welded joints. Mech Adv Mater Struct. 2019. https://doi.org/10.1080/15376494.2019.1567881(in press).

    Article  Google Scholar 

  13. Tian L, Luo Y. A study on the prediction of inherent deformation in fillet–welded joint using support vector machine and genetic optimization algorithm. J Intell Manuf. 2019. https://doi.org/10.1007/s10845-019-01469-w(in press).

    Article  Google Scholar 

  14. Lostado R, Fernandez Martinez R, Mac Donald BJ, Villanueva PM. Combining soft computing techniques and the finite element method to design and optimize complex welded products. Integr Comput-Aid E. 2015;22(2):153–70. https://doi.org/10.3233/ICA-150484.

    Article  Google Scholar 

  15. Bhatti AA, Barsoum Z, Murakawa H, Barsoum I. Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion. Mater Des. 2015;65:878–89. https://doi.org/10.1016/j.matdes.2014.10.019.

    Article  CAS  Google Scholar 

  16. Perić M, Tonković Z, Garašić I, Vuherer T. An engineering approach for a T-joint fillet welding simulation using simplified material properties. Ocean Eng. 2016;128:13–21. https://doi.org/10.1016/j.oceaneng.2016.10.006.

    Article  Google Scholar 

  17. Baba H, Era T, Ueyama T, Tanaka M. Single pass full penetration joining for heavy plate steel using high current GMA process. Weld World. 2017;61(5):963–9. https://doi.org/10.1007/s40194-017-0464-7.

    Article  CAS  Google Scholar 

  18. Perić M, Garašić I, Tonković Z, Vuherer T, Nižetić S, Dedić-Jandrek H. Numerical prediction and experimental validation of temperature and residual stress distributions in buried-arc welded thick plates. Int J Energy Res. 2019;43(8):3590–600. https://doi.org/10.1002/er.4506.

    Article  Google Scholar 

  19. Pilipenko A. Computer simulation of residual stress and distortion of thick plates in multi-electrode submerged arc welding. Their mitigation techniques. Doctoral Thesis, Trondheim, 2001.

  20. Huang H, Tsutsumi S, Wang J, Li L, Murakawa H. High performance computation of residual stress and distortion in laser welded 301L stainless sheets. Finite Elem Anal Des. 2017;135:1–10. https://doi.org/10.1016/j.finel.2017.07.004.

    Article  Google Scholar 

  21. Lin J, Ma N, Lei Y, Murakawa H. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method. J Mater Process Technol. 2017;243:387–94. https://doi.org/10.1016/j.jmatprotec.2016.12.021.

    Article  CAS  Google Scholar 

  22. Perić M, Tonković Z, Karšaj I, Stamenković D. A simplified engineering method for a T-joint welding simulation. Therm Sci. 2018;22(3):S867–73. https://doi.org/10.2298/TSCI171108020P.

    Article  Google Scholar 

  23. Seleš K, Perić M, Tonković Z. Numerical simulation of a welding process using a prescribed temperature approach. J Constr Steel Res. 2018;145:49–57. https://doi.org/10.1016/j.jcsr.2018.02.012.

    Article  Google Scholar 

  24. Venkatkumar D, Ravindran D. Effect of boundary conditions on residual stresses and distortion in 316 stainless steel butt welded plate. High Temp Mater Proc. 2019;38:827–36. https://doi.org/10.1515/htmp-2019-0048.

    Article  CAS  Google Scholar 

  25. Nasouri R, Nguyen K, Montoya A, Matamoros A, Bennett C, Li J. Thermally-induced demands due to hot dip galvanization of high mast illumination poles. Part I: finite element model development. J Constr Steel Res. 2019;162:105705. https://doi.org/10.1016/j.jcsr.2019.105705.

    Article  Google Scholar 

  26. Zhang J, Yu L, Liu Y, Ma Z, Li H, Liu C, Wu J, Ma J, Li Z. Analysis of the effect of tungsten inert gas welding sequences on residual stress and distortion of CFETR vacuum vessel using finite element simulations. Metals-Basel. 2018;8(11):912. https://doi.org/10.3390/met8110912.

    Article  CAS  Google Scholar 

  27. Deng D. FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Mater Des. 2009;30(2):359–66. https://doi.org/10.1016/j.matdes.2008.04.052.

    Article  CAS  Google Scholar 

  28. Perić M, Seleš K, Tonković Z, Lovrenić-Jugović M. Numerical simulation of welding distortions in large structures with a simplified engineering approach. Open Phys. 2019;17:719–30. https://doi.org/10.1515/phys-2019-0076.

    Article  Google Scholar 

  29. Perić M, Tonković Z, Maksimović SK, Stamenković D. Numerical analysis of residual stresses in a T-joint fillet weld using a submodeling technique. FME Trans. 2019;47(1):183–9. https://doi.org/10.5937/fmet1901183P.

    Article  Google Scholar 

  30. Marenić E, Skozrit I, Tonković Z. On the calculation of stress intensity factors and J-integrals using the submodeling technique. J Press Vessel-Technol ASME. 2010;132(4):041203. https://doi.org/10.1115/1.4001267.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Marijana Milković, M.Sc.ME., for performing residual stress measurements and the Slovenian Research Agency for founding the research program P2-0137 Numerical and Experimental Analysis of Nonlinear Mechanical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mato Perić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perić, M., Nižetić, S., Garašić, I. et al. Numerical calculation and experimental measurement of temperatures and welding residual stresses in a thick-walled T-joint structure. J Therm Anal Calorim 141, 313–322 (2020). https://doi.org/10.1007/s10973-019-09231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09231-3

Keywords

Navigation