Skip to main content
Log in

Numerical investigation of heat transfer and flow characteristics of MHD nano-fluid forced convection in a pipe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the behavior of Cu–water nano-fluid in a pipe has been investigated numerically. The pipe is under the external magnetic field, and the magnetic field is applied perpendicularly to the pipe. The temperature of pipe is higher than the temperature of fluid. The study was carried out for three different Reynolds numbers. The magnetic field forces and nano-fluid volume fractions were chosen as Ha = 0, 10, 20 and φ = 0, 0.02, 0.04, respectively. Analysis was carried out with the ANSYS Fluent commercial software. Fluid velocity curves, local Nusselt (NuX) and average Nusselt (Nu) values are presented graphically. In all Re numbers, the fluid velocity decreases with magnetic field strength and nanoparticle effect. Local Nu number has increased with magnetic field, nanoparticle volume fraction (Re = 500) and Re number. However, this increase is less for the nano-fluid volume fraction, and then decreases at Re = 5 and 50. At all magnetic field strengths, the mean Nu number for Re = 5 and 50 is reduced with the addition of nanoparticles, but has increased for Re = 500. At all nano-volume fraction, the average Nu number is increased with the magnetic field for Re = 50 and 500. For Re = 5, the average Nu number increases up to Ha = 10, but it decreases at Ha = 20. As a result, magnetic field strength, nano-fluid volume fraction and Re number have found to be effective on heat transfer, and nano-fluid motion can be controlled by magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminum oxide

C p :

Specific heat, J kg−1 K−1

Cu:

Copper

CuO:

Copper oxide

g :

Gravitational acceleration, m s−2

Ha:

Hartman number

k :

Thermal conductivity, W m−1 K−1

k eff :

Effective thermal conductivity

L :

Length of channel, m

D :

Diameter, m

Num :

Average Nusselt number

Nux :

Local Nusselt number

P :

Pressure, Pa

Re:

Reynolds number

t :

Time, s

T :

Temperature, K

T i :

Inlet temperature, K

T w :

Wall temperature, K

TiO2 :

Titanium dioxide

Vr, Vѳ, Vz :

Velocity component, m s−1

ZnO:

Zinc oxide

ρ :

Density, kg m−3

φ :

Nanoparticle volume fraction (–)

µ :

Dynamic viscosity, N sm−2

µ eff :

Effective viscosity

nf:

Nano-fluid

f:

Base fluid

s:

Solid

References

  1. Heidary H, Hosseini R, Pirmohammadi M, Kermani MJ. Numerical study of magnetic field effect on nano-fluid forced convection in a channel. J Magn Magn Mater. 2015;374:11–7.

    Article  CAS  Google Scholar 

  2. Wang BX, Du JH, Peng, XF. Internal natural, forced and mixed convection in fluid-saturated porous medium. Trans Phenom Porous Media. 1998; 357–82.

  3. Demirel Y, Al-Ali HH, Abu-Al-Saud BA. Enhancement of convection heat-transfer in a rectangular duct. Appl Energy. 1999;64:441–51.

    Article  CAS  Google Scholar 

  4. Cheng KC, Hong SW. Effect of tube inclination on laminar convection in uniformly heated tubes for flat-plate solar collectors. Sol Energy. 1972;13:363–71.

    Article  Google Scholar 

  5. Esfe MH, Saedodin S, Malekshah EH, Babaie A. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2019;135:813–59.

    Article  Google Scholar 

  6. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. 1995; No. ANL/MSD/CP-84938; CONF–951135—29. Argonne National Lab., IL.

  7. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nano-particles. ASME J Heat Transf. 1999;121:280–9.

    Article  CAS  Google Scholar 

  8. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nano fluids containing copper nano-particles. Appl Phys Lett. 2001;78:718–20.

    Article  CAS  Google Scholar 

  9. Xuan Y, Li Q. Heat transfer enhancement of nano-fluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  10. Hartmann J. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Mathematisk Fysiske Meddelelser. 1937;15(6):1–28.

    Google Scholar 

  11. Oztop HF, Al-salem K, Pop I. MHD Mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54:3494–504.

    Article  Google Scholar 

  12. Shirvan KM, Mamourian M, Mirzakhanlari S, Moghiman M. Investigation on effect of magnetic field on mixed convection heat transfer in a ventilated square cavity. Procedia Eng. 2015;127:1181–8.

    Article  Google Scholar 

  13. Jha BK, Aina B, Ajiya AT. MHD natural convection flow in a vertical parallel plate microchannel. Ain Shams Eng J. 2015;6(1):289–95.

    Article  Google Scholar 

  14. Sajjadi H, Kefayeti GR. MHD turbulent and laminar natural convection in a square cavity utilizing Lattice Boltzmann Method. Heat Transf Asian Res. 2016;45(8):795–814.

    Article  Google Scholar 

  15. Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems—a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72.

    Article  CAS  Google Scholar 

  16. Babu MJ, Sandeep N, Saleem S. Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion. Alex Eng J. 2017;56(4):659–69.

    Article  Google Scholar 

  17. Kumar MS, Sandeep N, Kumar BR, Saleem S. Effect of aligned magnetic field on MHD squeezing flow of Casson fluid between parallel plates. Defect Diffus Forum. 2018;384:1–11.

    Article  Google Scholar 

  18. Sajjadi H, Delouei AA, Sheikholeslami M, Atashafrooz M, Succi S. Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann Method. Phys A. 2019;515:474–96.

    Article  CAS  Google Scholar 

  19. Atashafrooz M. The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects. J Therm Anal Calorim. 2019;1–18.

  20. Tiago AM, Debora CM, Gherhardt R. Nanofluids for heat transfer applications: a review. J Braz Soc Mech Sci Eng. 2018;40:303.

    Article  Google Scholar 

  21. Salem TK, Nazzal IT, Arik M, Budakli M. Impact of functional nanofluid coolant on radiator performance. ASME J Therm Sci Eng Appl. 2019;11(4):041020. https://doi.org/10.1115/1.4044271.

    Article  CAS  Google Scholar 

  22. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flows. Int J Heat Mass Transf. 2005;48:1107–16.

    Article  CAS  Google Scholar 

  23. Zhang H, Shao S, Xu H, Tian C. Heat transfer and flow features of Al2O3–water nanofluids flowing through a circular microchannel-experimental results and correlations. Appl Therm Eng. 2013;61:86–92.

    Article  CAS  Google Scholar 

  24. Nikkhah V, Sarafraz MM, Hormozi F. Application of spherical copper oxide(II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q. 2015;29:405–15.

    Article  CAS  Google Scholar 

  25. Cieslinski JT, Kaczmarczyk TZ. Pool boiling of water–Al2O3 and water–Cu nanofluids outside porous coated tubes. Heat Transf Eng. 2015;36:553–63.

    Article  CAS  Google Scholar 

  26. Erdem M. Experimental and numerical investigation of nanoparticles added magnetohydrodynamics flow. Ph.D. Thesis. Firat University the Institute of Natural and Applied Sciences. 2019. p. 187.

  27. Salman BH, Mohammed HA, Ash K. Heat transfer enhancement of nanofluids flow in microtube with constant heat flux. Exp Therm Fluid Sci. 2012;39:1195–204.

    CAS  Google Scholar 

  28. Kimouche A, Mataoui A, Oztop HF, Abu-Hamdeh N. Analysis of heat transfer of different nanofluids flow through an abrupt expansion pipe. Appl Therm Eng. 2017;112:965–74.

    Article  CAS  Google Scholar 

  29. Hatami M, Hatami J, Ganji DD. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hallow porous vessel. Comput Methods Prog Biomed. 2014;113:632–41.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LMB. Energy. 2013;60:501–10.

    Article  CAS  Google Scholar 

  31. Hatami M, Nouri R, Ganji DD. Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate. J Mol Liq. 2013;187:294–301.

    Article  CAS  Google Scholar 

  32. Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2013;37:1451–67.

    Article  Google Scholar 

  33. Mahmoudi AH, Pop L, Shahi M, Talebi F. MHD Natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput Fluids. 2013;2013(72):46–62.

    Article  Google Scholar 

  34. Selimefendigil F, Oztop HF. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. J Heat Mass Transf. 2014;2014(78):741–54.

    Article  Google Scholar 

  35. Freidoonimehr N, Rashidi MM, Mahmud S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci. 2015;87:136–45.

    Article  CAS  Google Scholar 

  36. Recebli Z, Selimli S, Gedik E. Three dimensional numerical analysis of magnetic field effect on convective heat transfer during the MHD steady state laminar flow of liquid lithium in a cylindrical pipe. Comput Fluid. 2013;88:410–7.

    Article  CAS  Google Scholar 

  37. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017;133:73–90.

    Article  Google Scholar 

  38. Bejan A. Convection heat transfer. Wiley; 1995. Incorporated.

  39. Zhao G, Jian Y, Chang L, Buren M. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J Magn Magn Mater. 2015;387:111–7.

    Article  CAS  Google Scholar 

  40. Karimipour A, D’Orazio A, Shadloo MS. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump. Phys E. 2017;86:146–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Management Unit of Scientific Research Projects of Firat University (FUBAP) (Project Number: TEKF.15.01). Authors thank Firat University for supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Erdem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, M., Varol, Y. Numerical investigation of heat transfer and flow characteristics of MHD nano-fluid forced convection in a pipe. J Therm Anal Calorim 139, 3897–3909 (2020). https://doi.org/10.1007/s10973-020-09366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09366-8

Keywords

Navigation