Skip to main content
Log in

Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo–Christov heat flux theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current study explores the magnetized flow of an Oldroyd-B fluid by a rotating disk. In this analysis, we use the modified Fourier’s law instead of classical Fourier’s law to study the fluid thermal features. The impact of homogeneous–heterogeneous reactions for mass transport is also considered. The von Karman variables are used to convert the partial differential equations into non-dimensional ordinary differential equations. The BVP Midrich scheme is utilized to acquire the numerical solution. Diverse effects of various involved parameters on the velocities, temperature and concentration of the liquid are analyzed. Additionally, the comparison table is made for limiting case to see the validity of our numerical results with the past outcomes. It is observed that the fluid velocity reduces with the impact of relaxation time parameter. Further, higher values of thermal relaxation time decline the fluid temperature. Moreover, with an increase in homogenous reaction, the concentration boundary layer thickness becomes thinner. The reduction in wall concentration gradient is noticed against homogeneous reaction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(r,\varphi ,z\) :

Cylindrical coordinate

uvw :

Components of velocity

T :

Fluid temperature

\(T_\mathrm{w}\) :

Wall temperature

\(\nu\) :

Kinematic viscosity

C :

Fluid concentration

\(A^{*}\), \(B^{*}\) :

Chemical species

a, b :

Concentrations of chemical species

\(\lambda _{1}\) :

Relaxation time

M :

Magnetic field

\(\beta _{1}\) :

Relaxation time parameter

Pr:

Prandtl number

\(\varepsilon\) :

Thermal relaxation time parameter

\(K_{2}\) :

Heterogeneous reaction rate

\(\Omega\) :

Angular velocity

\(D_\mathrm{A}\), \(D_\mathrm{B}\) :

Diffusion coefficients of species

\(\delta\) :

Ratio of diffusion coefficients

F :

Radial velocity

H :

Axial velocity

\(\theta\) :

Dimensionless temperature

\(\alpha\) :

Thermal diffusivity

\(c_\mathrm{p}\) :

Specific heat capacity

\(T_{\infty }\) :

Ambient temperature

\(C_\mathrm{w}\) :

Wall concentration

\(\rho\) :

Fluid density

\(C_{\infty }\) :

Ambient concentration

\(k_\mathrm{c}\), \(k_\mathrm{s}\) :

Rate constants

\(K_\mathrm{r}\) :

Reaction rate

\(\lambda _{2}\) :

Retardation time

R :

Stretching parameter

\(\beta _{2}\) :

Retardation time parameter

Sc:

Schmidt number

\(K_{1}\) :

Homogenous reaction rate

\(\eta\) :

Dimensionless variable

\(\theta\) :

Dimensionless temperature

\(B_{0}\) :

Strength of magnetic field

\(\mu\) :

Dynamic viscosity

G :

Azimuthal velocity

c :

Stretching rate

\(\phi\) :

Dimensionless concentration

References

  1. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 2018;265:347–55.

    CAS  Google Scholar 

  2. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  3. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int. J. Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  4. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Meth. Appl. Mech. Eng. 2019;344:319–33.

    Google Scholar 

  5. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  6. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  7. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transf. 2019;130:1322–42.

    CAS  Google Scholar 

  8. Hashim HA, Alshomrani AS, Khan M. Multiple physical aspects during the flow and heat transfer analysis of Carreau fluid with nanoparticles. Sci. Rep. 2018;8:17402.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fourier JBJ. Theorie Analytique de la Chaleur. Paris: Didot; 1822. p. 499–508.

    Google Scholar 

  10. Cattaneo C. Sulla conduzione del calore. Atti Sem. Mat. E Fis. Della Univ. Modena. 1948;3:83–101.

    Google Scholar 

  11. Layek GC, Pati NC. Bifurcations and chaos in convection taking non-Fourier heat flux. Phys. Lett. A. 2017;381:3568–75.

    CAS  Google Scholar 

  12. Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 2009;36:481–6.

    Google Scholar 

  13. Ciarletta M, Straughan B. Uniqueness and structural stability for the Cattaneo–Christov equations. Mech. Res. Commun. 2010;37:445–7.

    Google Scholar 

  14. Straughan B. Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 2010;53:95–8.

    Google Scholar 

  15. Straughan B. Acoustic waves in a Cattaneo–Christov gas. Phys. Lett. A. 2010;374:2667–9.

    CAS  Google Scholar 

  16. Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. App. Math. Lett. 2014;38:87–93.

    Google Scholar 

  17. Sulti FA. Impact of Cattaneo–Christov heat flux model on stagnation-point flow towards a stretching sheet with slip effects. J. Heat Transf. 2019;141(2):022003.

    Google Scholar 

  18. Haddad SAM. Thermal instability in Brinkman porous media with Cattaneo–Christov heat flux. Int. J. Heat Mass Transf. 2014;68:659–68.

    Google Scholar 

  19. Tibullo V, Zampoli V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 2011;38:77–9.

    Google Scholar 

  20. Ali ME, Sandeep N. Cattaneo–Christov model for radiative heat transfer of magnetohydrodynamic Casson–Ferrofluid: a numerical study. Res. Phys. 2017;7:21–30.

    Google Scholar 

  21. Kumar KA, Reddy JVR, Sugunamma V, Sandeep N. Magnetohydrodynamic Cattaneo–Christov flow past a cone and a wedge with variable heat source/sink. Alex. Eng. J. 2018;57:435–43.

    Google Scholar 

  22. Oldroyd JG. On the formulation of rheological equations of state. Proc R Soc Lond Ser A Math Phys Sci. 1950;200:523–41.

    CAS  Google Scholar 

  23. Khan M, Hafeez A, Ahmed J. Impacts of non-linear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid. Phys. A: Stat. Mech. Appl. 2020;124085. https://doi.org/10.1016/j.physa.2019.124085.

    Article  CAS  Google Scholar 

  24. Mahanthesh B, Gireesha BJ, Shehzad SA, Abbasi FM, Gorla RSR. Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Appl. Math. Mech. 2017;38:969–80.

    Google Scholar 

  25. Kumar KG, Ramesh GK, Gireesha BJ, Gorla RSR. Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd-B nanofluid with thermal radiation. Alex. Eng. J. 2018;57:2139–49.

    Google Scholar 

  26. Zhang Y, Yuan B, Bai Y, Cao Y, Shen Y. Unsteady Cattaneo–Christov double diffusion of Oldroyd-B fluid thin film with relaxation-retardation viscous dissipation and relaxation chemical reaction. Powder Technol. 2018;338:975–82.

    CAS  Google Scholar 

  27. Alfvén H. Existence of electromagnetic-hydrodynamic waves. Nature. 1942;150:405–6.

    Google Scholar 

  28. Khan M, Hashim Hafeez A. A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking surface with thermal radiatio: dual solutions. Chem. Eng. Sci. 2017;173:1–11.

    CAS  Google Scholar 

  29. Sheikholeslami M, Houman HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int. J. Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  30. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe\(_{3}\)O\(_{4}\)-H\(_{2}\)O nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  31. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

  32. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int. J. Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  33. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  34. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe\(_{3}\)O\(_{4}\)-H\(_{2}\)O nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 2018;118:182–92.

    CAS  Google Scholar 

  35. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  36. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J. Ther. Anal. Calorim. 2019;135:3197–213.

    CAS  Google Scholar 

  37. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure. J. Ther. Anal. Calorim. 2019;135:685–95.

    CAS  Google Scholar 

  38. Khashi’ie NS, Arifin NM, Rashidi MM, Hafidzuddin EH, Wahi N. Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium. J. Therm. Anal. Calorim. 2019. https://doi.org/10.1007/s10973-019-08713-8.

    Article  Google Scholar 

  39. Fersadou B, Kahalerras H, Nessab W, Hammoudi D. Effect of magnetohydrodynamics on heat transfer intensification and entropy generation of nanofluid flow inside two interacting open rectangular cavities. J. Therm. Anal. Calorim. 2019;138:3089–108.

    CAS  Google Scholar 

  40. Von Karman T. Uberlaminare und turbulente Reibung. Zeitschrift fur Angew Math. Mech ZAMM. 1921;1:233–52.

    Google Scholar 

  41. Merkin JH. A model for isothermal homogeneous–heterogeneous reactions in boundary-layer flow. Math. Comput. Model. 1996;24:125–36.

    Google Scholar 

  42. Turkyilmazoglu M. Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids. 2014;94:139–46.

    CAS  Google Scholar 

  43. Bachok N, Ishak A, Pop I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B: Condens. Matter. 2011;406:1767–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, A., Khan, M. & Ahmed, J. Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo–Christov heat flux theory. J Therm Anal Calorim 144, 793–803 (2021). https://doi.org/10.1007/s10973-020-09421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09421-4

Keywords

Navigation