Skip to main content
Log in

Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present study examines the impacts of wall flexibility on MHD peristaltic flow of Eyring–Powell nanofluid with convective conditions. No slip conditions are imposed on channel walls. Analysis is made in presence of Joule heating and radiation aspects. Viscous dissipation effects are also analyzed. Nanofluid model is considered by taking the impacts of thermophoresis and Brownian motion. Lubrication approach (large wavelength and low Reynolds number) is taken into account for the simplicity of problem. Numerical technique is utilized for the solution. Influence of pertinent variables on quantities of interest (axial velocity, temperature, concentration and coefficient of heat transfer) is inspected graphically. The larger magnetic field corresponds to a decay in velocity while Eyring–Powell fluid parameters for velocity and temperature show the opposite impact. Brownian motion and thermophoresis impacts yield an increment in temperature and heat transfer coefficient. Reverse behavior is observed for radiation on temperature and concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Latham TW. Fluid motion in a peristaltic pump. MS. Thesis. Massachusetts Institute of Technology, Cambridge (1966).

  2. Shapiro AH, Jaffrin MY, Wienberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Google Scholar 

  3. Mekheimer KS, Elmaboud AY. Non-linear peristaltic transport of a second-order fluid through a porous medium. Appl. Math. Model. 2011;35:2695–710.

    Google Scholar 

  4. Tripathi D, Bég OA, Gupta PK, Radhakrishnamacharya G, Mazumdar J. DTM simulation of peristaltic viscoelastic biofluid flow in asymmetric porous media: a digestive transport model. J Bionic Eng. 2015;12:643–55.

    Google Scholar 

  5. Abbasi FM, Shehzad SA. Heat transfer analysis for peristaltic flow of Carreau-Yasuda fluid through a curved channel with radial magnetic field. Int J Heat Mass Transf. 2017;115:777–83.

    Google Scholar 

  6. Sreenadh S, Komala K, Srinivas ANS. Peristaltic pumping of a power–Law fluid in contact with a Jeffrey fluid in an inclined channel with permeable walls. Ain Shams Eng. J. 2017;8:605–11.

    Google Scholar 

  7. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Hydromagnetic peristalsis of water based nanofluids with temperature dependent viscosity: a comparative study. J Mol Liq. 2017;234:324–9.

    CAS  Google Scholar 

  8. Bhatti MM, Zeeshan A, Ellahi R, Shit GC. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Adv Powder Technol. 2018;29:1189–97.

    Google Scholar 

  9. Eldabe NTM, Shaker MO, Maha SA. Peristaltic flow of MHD Jeffrey fluid through porous medium in a vertical channel with heat and mass transfer with radiation. J. Nanofluids. 2018;7:595–602.

    Google Scholar 

  10. Vaidya H, Rajashekhar C, Manjunatha G, Prasad KV. Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties. J. Braz. Soc. Mech. Sci. Eng. 2019;41:52.

    Google Scholar 

  11. Javid K, Ali N, Asghar Z. Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effect. Phys. Scr. 2019;94:115226.

    CAS  Google Scholar 

  12. Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry. 2019;11:276.

    CAS  Google Scholar 

  13. Mustafa M, Hina S, Hayat T, Alsaedi A. Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. Int J Heat Mass Transf. 2012;55:4871–7.

    CAS  Google Scholar 

  14. Sucharitha G, Lakshminarayana P, Sandeep N. Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int J Mech Sci. 2017;131:52–62.

    Google Scholar 

  15. Khan AA, Tariq H. Influence of wall properties on the peristaltic flow of a dusty Walter’s B fluid. J. Braz. Soc. Mech. Sci. Eng. 2018;40:368.

    Google Scholar 

  16. Eldesoky IM, Abumandour RM, Abdelwahab ET. Analysis for various effects of relaxation time and wall properties on compressible Maxwellian peristaltic slip flow. Z. Naturforsch. A. 2019;74:317–31.

    CAS  Google Scholar 

  17. Powell RE, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature. 1944;154:427–8.

    CAS  Google Scholar 

  18. Hayat T, Tanveer A, Yasmin H, Alsaedi A. Effects of convective conditions and chemical reaction on peristaltic flow of Eyring–Powell fluid. Appl. Bionics. Biomech. 2014;11:221–33.

    Google Scholar 

  19. Hina S. MHD peristaltic transport of Eyring–Powell fluid with heat/mass transfer, wall properties and slip conditions. J Magn Magn Mater. 2016;404:148–58.

    CAS  Google Scholar 

  20. Hussain Q, Alvi N, Latif T, Asghar S. Radiative heat transfer in Powell-Eyring nanofluid with peristalsis. Int. J. Thermophysics. 2019;40:46.

    Google Scholar 

  21. Riaz A, Ellahi R, Bhatti MM, Marin M. Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research. 2019;50:1539–60.

    Google Scholar 

  22. Kothandapani M, Prakash J. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J Magn Magn Mater. 2015;378:152–63.

    CAS  Google Scholar 

  23. Hayat T, Nisar Z, Yasmin H, Alsaedi A. Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J Mol Liq. 2016;220:448–53.

    CAS  Google Scholar 

  24. Bhatti MM, Zeeshan A, Ijaz N, Bég OA, Kadir A. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci. Tech. Int. J. 2017;20:1129–39.

    Google Scholar 

  25. Latha R, Kumar BR. Effects of Thermal Radiation on Peristaltic Flow of Nanofluid in a Channel with Joule Heating and Hall Current. Appl. Math. Sci. Comput. 2019;301-311.

  26. Choi SUS. Enhancing thermal conductivity of the fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  27. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2005;128:240–50.

    Google Scholar 

  28. Hayat T, Nisar Z, Ahmad B, Yasmin H. Simultaneous effects of slip and wall propertie on MHD peristaltic motion of nanofluid with Joule heating. J Magn Magn Mater. 2015;395:48–58.

    CAS  Google Scholar 

  29. Ellahi R, Raza M, Akbar NS. Study of peristaltic flow of nanofluid with entropy generation in a porous medium. J. Porous Media. 2017;20:461–78.

    Google Scholar 

  30. Tripathi D, Sharma A, Bég OA. Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv Powder Technol. 2018;29:639–53.

    CAS  Google Scholar 

  31. Abbasi FM, Gul M, Shehzad SA. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity. Physica E. 2018;99:275–84.

    CAS  Google Scholar 

  32. Mekheimer KS, Hasona WM, Abo-Elkhair RE, Zaher AZ. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Phys Lett A. 2018;38:85–93.

    Google Scholar 

  33. Hayat T, Nawaz S, Alsaedi A, Ahmad B. Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation. J. Braz. Soc. Mech. Sci. Eng. 2018;40:574.

    Google Scholar 

  34. Sadaf H, Akbar MU, Nadeem S. Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus. Math. Comput. Simul. 2018;148:16–36.

    Google Scholar 

  35. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    CAS  Google Scholar 

  36. Hassan M, Marin M, Alsharif A, Ellahi R. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382:2749–53.

    CAS  Google Scholar 

  37. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    CAS  Google Scholar 

  38. Abbasi FM, Shanakhat I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.

    CAS  Google Scholar 

  39. Rafiq M, Yasmin H, Hayat T, Alsaad F. Effect of Hall and ion-slip on the peristaltic transport of nanofluid: a biomedical application. Chin. J. Phys. 2019;60:208–27.

    CAS  Google Scholar 

  40. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    CAS  Google Scholar 

  41. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy-Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.

    CAS  Google Scholar 

  42. Hayat T, Nawaz S, Alsaedi A, Mahian O. Entropy generation in peristaltic flow of Williamson nanofluid. Phys. Scr. 2019;94:125216.

    CAS  Google Scholar 

  43. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J. Therm. Anal. Calorim. 2019; 1-25.

  44. Nguyen-Thoi T, Sheikholeslami M, Shah M, Kumam P, Shafee A. Magnetohydrodynamic nanofluid radiative thermal behavior by means of Darcy law inside a porous media. Sci. Rep. 2019;9:1–11.

    CAS  Google Scholar 

  45. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    CAS  Google Scholar 

  46. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019;138:1–12.

    CAS  Google Scholar 

  47. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Peristalsis of nanofluid through curved channel with Hall and Ohmic heating effects. J. Cent. South Univ. Technol. 2019;26:2543–53.

    CAS  Google Scholar 

  48. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09229-x.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Higher Education Commission (HEC) of Pakistan for financial Support of this work under the Project No. 20-3088/NRPU/R & D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Nisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, Z., Hayat, T., Alsaedi, A. et al. Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid. J Therm Anal Calorim 144, 1199–1208 (2021). https://doi.org/10.1007/s10973-020-09576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09576-0

Keywords

Navigation