Skip to main content
Log in

Maximum entropy-based variational multiscale element-free Galerkin methods for scalar advection–diffusion problems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a new parameter-free stability term via Galerkin mesh-free scheme to solve the multiscale behavior of steady-state advection-dominated advection–diffusion problems where the classical Galerkin method is shown to be unstable. A variational multiscale element-free Galerkin method (VMEFG) is proposed based on first-order local maximum entropy (LME) basis functions, which are owning weak Kronecker delta property that enables the imposition of essential boundary conditions with ease. In the present work, the finite space of the problem is enlarged by the infinite bubble space in the background integration cell. These bubbles constitute the fine scale solve locally (captures) the thin layers associated with the flow. Then, this bubble space solution is substituted into the coarse scales to recover the VMEFG method globally, which determines the parameter-free stability term naturally. The developed LME-based VMEFG is studied against three standard benchmark problems exhibiting boundary/internal layers and observed to be stable and robust in resolving all the layers. The effect of various values of locality parameter in defining the LME approximants is carried out between the values 1.2 and 2. It is found that the suboptimal solution is arrived at the locality parameter value, 1.5 and above 1.8, is not recommended. Convergence test is also carried out with two different mass functions and validated with the analytical solution and found that the computational efficiency of the present method is in good agreement with analytical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a:

Unknown constants in the approximation

b :

Constant convective velocity

G :

Hessian matrix

h :

Characteristic nodal spacing

H :

Shannon’s entropy

\(k\) :

Diffusivity (m2 s−1)

K1, K2, K3 :

Sub-cells of Delaunay triangular cell

L 2 :

Error measure norm

n :

Outward unit normal

N :

Number of nodes

N c :

Number of Delaunay triangular cells

Pe:

Peclet number

\(q_{{\text{N}}}\) :

Neumann boundary heat flux (W m−2)

r i :

Radius of the support for each node

s :

Prescribed source

T :

Unknown scalar in the problem

T h :

Approximation of the trail solution

\(\bar{T}\) :

Coarse scale of the trail solution

\(T^{\prime}\) :

Fine scale of the trail solution

T D :

Scalar value on Dirichlet boundary

w :

Prior mass function

\(\bar{w}\) :

Coarse scale of the mass function

\(w'\) :

Fine scale of the mass function

x :

Coordinates of the nodes

x i :

Scattered node set

\(\tilde{{x}}_{{\text{i}}}\) :

Shifted coordinates

\(H_{0}^{1}\) :

Hilbert space

L 2 :

Lebesgue space

V :

Subspace of Hilbert space

V h :

Subspace of V

\(\varOmega\) :

Domain of the problem

\({{\text{d}}\varOmega }\), \(\varGamma\) :

Boundary of the domain

\({\varGamma}_{{\text{N}}}\) :

Neumann boundary conditions imposed boundary

\(\xi\) :

Bubble function

\(\beta\) :

Pareto optimal parameter

\(\gamma\) :

Locality parameter

λ :

Lagrange Multiplier vector

\(\emptyset_{{\text{i}}}\) :

Basis functions

\(\tau\) :

Stabilization parameter

a:

Local Point of interest within the Delaunay triangular cell

cell:

Delaunay triangular cell of interest

i:

Node of interest

j:

Neighbor Node

d:

Spatial dimension

num:

Numerical solution

exact:

Exact solution

References

  1. Masud A, Khurram RA. A multiscale/stabilized finite element method for the advection–diffusion equation. Comput Methods Appl Mech Eng. 2004;193:1997–2018.

    Google Scholar 

  2. Brezzi F, Franca LP, Hughes TJR. Russo A. b = ∝ g. Comput Methods Appl Mech Eng. 1997;145:329–39.

    Google Scholar 

  3. Brooks AN, Hughes TJR. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 1982;32:199–200.

    Google Scholar 

  4. Franca LP, Frey SL, Hughes TJR. Stabilized finite element methods: I. Application to the advective-diffusive model. Comput Methods Appl Mech Eng. 1992;95:253–76.

    Google Scholar 

  5. Hughes TJR, Mallet M, Akira M. A new finite element formulation for computational fluid dynamics: II Beyond SUPG. Comput Methods Appl Mech Eng. 1986;54:341–55.

    Google Scholar 

  6. Shishkin GI, Roos H-G, Stynes M, Tobiska L. Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems. J Appl Math. 1996;77:403.

    Google Scholar 

  7. Hughes TJR, Franca LP, Balestra M. A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng. 1986;59:85–99.

    Google Scholar 

  8. Hughes TJR, Franca LP, Hulbert GM. A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng. 1989;73:173–89.

    Google Scholar 

  9. Franca LP, Farhat C. Bubble functions prompt unusual stabilized finite element methods. Comput Methods Appl Mech Eng. 1995;123:299–308.

    Google Scholar 

  10. Franca PL, Farhat C, Lesoinne M, Russo A. Unusual stabilized finite element methods and residual free bubbles. Int J Numer Methods Fluids. 1998;27:159–68.

    Google Scholar 

  11. Brezzi F, Bristeau M-O, Franca LP, Mallet M, Rogé G. A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Eng. 1992;96:117–29.

    Google Scholar 

  12. Brezzi F, Franca LP, Russo A. Further considerations on residual-free bubbles for advective-diffusive equations. Comput Methods Appl Mech Eng. 1998;166:25–33.

    Google Scholar 

  13. Brezzi F, Houston P, Marini D, Süli E. Modeling subgrid viscosity for advection–diffusion problems. Comput Methods Appl Mech Eng. 2000;190:1601–10.

    Google Scholar 

  14. Brezzi F, Marini D, Russo A. Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems. Comput Methods Appl Mech Eng. 1998;166:51–63.

    Google Scholar 

  15. Brezzi F, Marini LD, Russo A. On the choice of a stabilizing subgrid for convection–diffusion problems. Comput Methods Appl Mech Eng. 2005;194:127–48.

    Google Scholar 

  16. Nesliturk AI. On the choice of stabilizing sub-grid for convection–diffusion problem on rectangular grids. Comput Math with Appl. 2010;59:3687–99.

    Google Scholar 

  17. Sendur A. A stabilizing augmented grid for rectangular discretizations of the convection–diffusion–reaction problems. Calcolo. 2018;55:986.

    Google Scholar 

  18. Sendur A, Nesliturk A, Kaya A. Applications of the pseudo residual-free bubbles to the stabilization of the convection–diffusion–reaction problems in 2D. Comput Methods Appl Mech Eng. 2014;277:154–79.

    Google Scholar 

  19. Franca LP, Nesliturk A, Stynes M. On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method. Comput Methods Appl Mech Eng. 1998;166:35–49.

    Google Scholar 

  20. Franca LP, Hwang F-N. Refining the submesh strategy in the two-level finite element method: application to the advection–diffusion equation. Int J Numer Methods Fluids. 2002;39:161–87.

    Google Scholar 

  21. Hughes TJR. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng. 1995;127:387–401.

    Google Scholar 

  22. Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B. The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng. 1998;166:3–24.

    Google Scholar 

  23. Masud A, Khurram RA. A multiscale finite element method for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng. 2006;195:1750–77.

    Google Scholar 

  24. Ayub M, Masud A. A new stabilized formulation for convective-diffusive heat transfer. Numer Heat Transf Part B Fundam. 2003;44:1–23.

    Google Scholar 

  25. Masud AA, Bergman L. Application of multi-scale finite element methods to the solution of the Fokker-Planck equation. Comput Methods Appl Mech Eng. 2005;194:1513–26.

    Google Scholar 

  26. Masud A, Hughes TJR. A stabilized mixed finite element method for Darcy flow. Comput Methods Appl Mech Eng. 2002;191:4341–70.

    Google Scholar 

  27. Coutinho ALGA, Franca LP, Valentin F. Numerical multiscale methods. Int J Numer Methods Fluids. 2012;70:403–19.

    Google Scholar 

  28. Hong K, Wang C, Xu F. Finite-element thermal analysis of flows on moving domains with application to modeling of a hydraulic arresting gear. J Therm Anal Calorim. 2020;56:88.

    Google Scholar 

  29. Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134:2305–15.

    CAS  Google Scholar 

  30. Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2020;139:661–71.

    CAS  Google Scholar 

  31. Jain A, Sharma M, Kumar A, Sharma A, Palamanit A. Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer. J Therm Anal Calorim. 2019;136:173–84.

    CAS  Google Scholar 

  32. Fries T-P, Matthies HG. Classification and Overview of Meshfree Methods. Inform der Tech Univ Braunschweig. Revised 20. Braunschweig: Institut f{ü}r Wissenschaftliches Rechnen; 2004;2003–03.

  33. Wu CT, Young DL, Hong HK. Adaptive meshless local maximum-entropy finite element method for convection—diffusion problems. Comput Mech. 2014;76:189–200.

    Google Scholar 

  34. Cyron CJ, Nissen K, Gravemeier V, Wall WA. Information flux maximum-entropy approximation schemes for convection–diffusion problems. Int J Numer Methods Fluids. 2010;64:1180–200.

    Google Scholar 

  35. Nissen K, Wall WA. Pressure-stabilized maximum-entropy methods for incompressible Stokes. Int J Numer Methods Fluids. 2016;82:35–56.

    CAS  Google Scholar 

  36. Nissen K, Cyron C, Gravemeier V, Wall W. Information-flux method: a meshfree maximum-entropy Petrov-Galerkin method including stabilised finite element methods. Comput Methods Appl Mech Eng. 2012;241:225–37.

    Google Scholar 

  37. Nasiri H, Abdollahzadeh Jamalabadi MY, Sadeghi R, Safaei MR, Nguyen TK, Safdari SM. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2019;135:1733–41.

    CAS  Google Scholar 

  38. Sukumar N. Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Methods Eng. 2004;61:2159–81.

    Google Scholar 

  39. Sukumar N, Wright RW. Overview and construction of meshfree basis functions : from moving least squares to entropy approximants. Int J Numer Methods Eng. 2007;98:181–205.

    Google Scholar 

  40. Arroyo M, Ortiz M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng. 2006;98:2167–202.

    Google Scholar 

  41. Zhang X, Ouyang J, Wang J. Stabilization meshless method for convection-dominated problems. Appl Math Mech. 2008;29:1067–75.

    Google Scholar 

  42. Khankham S, Luadsong A, Aschariyaphotha N. MLPG method based on moving kriging interpolation for solving convection–diffusion equations with integral condition. J King Saud Univ Sci. 2015;27:292–301.

    Google Scholar 

  43. Lin H, Atluri SN. Meshless Local Petrov-Galerkin (MLPG) Method for convection-diffusion problems. Comput Model Eng Sci. 2000;1:896.

    Google Scholar 

  44. Lin H, Atluri NS. The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations. Comput Model Eng Sci. 2001;2:997.

    Google Scholar 

  45. Zhang L, Ouyang J, Zhang X, Zhang W. On a multi-scale element-free Galerkin method for the Stokes problem. Appl Math Comput. 2008;203:745–53.

    Google Scholar 

  46. Zhang L, Ouyang J, Wang X, Zhang X. Variational multiscale element-free Galerkin method for 2D Burgers’ equation. J Comput Phys. 2010;229:7147–61.

    CAS  Google Scholar 

  47. Zhang X, Xiang H. Variational multiscale element free Galerkin method for convection-diffusion-reaction equation with small diffusion. Eng Anal Bound Element. 2014;46:85–92.

    CAS  Google Scholar 

  48. Zhang T, Li X. Meshless analysis of Darcy flow with a variational multiscale interpolating element-free Galerkin method. Eng Anal Bound Element. 2019;100:237–45.

    Google Scholar 

  49. Zhang T, Li X. A generalized element-free Galerkin method for Stokes problem. Comput Math Appl. 2018;75:3127–38.

    Google Scholar 

  50. Ortiz A, Puso MA, Sukumar N. Maximum-entropy meshfree method for incompressible media problems. Finite Elem Anal Des. 2011;47:572–85.

    Google Scholar 

  51. Rosolen A, Peco C, Arroyo M. An adaptive meshfree method for phase-field models of biomembranes. Part I : approximation with maximum-entropy basis functions. J Comput Phys. 2013;249:303–19.

    CAS  Google Scholar 

  52. Ortiz-bernardin A, Hale JS, Cyron CJ. Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions. Comput Methods Appl Mech Eng. 2015;285:427–51.

    Google Scholar 

  53. Shannon CE. A mathematical theory of communication. Bell Syst Techol J. 1948;27:379–423.

    Google Scholar 

  54. Ortiz A, Puso MA, Sukumar N. Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity. Comput Methods Appl Mech Eng. 2010;199:1859–71.

    Google Scholar 

  55. Asensio M, Franca LP, Russo A. Residual-free bubbles for a singular perturbation equation. Numer Math Adv Appl. 2003;21:34. https://doi.org/10.1007/978-88-470-2089-4_2.

    Article  Google Scholar 

  56. Ortiz A, Puso MA, Sukumar N. Maximum-entropy meshfree method for incompressible media problems. Finite Element Anal Des. 2011;47(6):572–85. https://doi.org/10.1016/j.finel.2010.12.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreehari Peddavarapu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peddavarapu, S., Raghuraman, S. Maximum entropy-based variational multiscale element-free Galerkin methods for scalar advection–diffusion problems. J Therm Anal Calorim 141, 2527–2540 (2020). https://doi.org/10.1007/s10973-020-09845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09845-y

Keywords

Navigation