Skip to main content
Log in

Microstructure characterization, structure and magnetic properties of Ni–Mn–Sn shape memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, three shape memory alloys, Mn50Ni50-xSnx (x = 5, 7.5, and 10), were elaborated by melt spinning. The structure, microstructure, and magnetic properties of these alloys were carried out by X-ray diffraction, scanning electron microscopy, and physical property measurement system, respectively. The experimental results showed that the increase in Sn ratio caused a phase transformation. The structure of the martensite phase (for x = 5 and 7.5) was seen as a monoclinic 14 M structure, while the structure of the austenite phase (for x = 10) was observed as a cubic L21 structure. We revealed that the addition of Sn led to an almost linear decrease in martensitic transition temperatures, due to the decrease in valence electron ratio (e/a). We explored that for x = 10, the martensitic transition that occurs from the ferromagnetic austenite to weakly magnetic martensite was realized due to the strong magnetostructural coupling in this alloy. Also, it is found that there is a slight decrease in temperatures and a slight increase in the thermal hysteresis range, due to the increase in the magnetic field. While, for x = 7.5 and x = 5, they have the transitions at high temperatures above 400 and 550 K, respectively. This fact might limit these alloys in their applications. So, the present results indicate that the amount of Sn content in the MnNiSn alloys plays an important role to modify the structural and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dai YC, Hou L, Fautrelle Y, Li ZB, Esling C, Ren ZM, Li X. Martensitic transformation and detwinning in directionally solidified two-phase Ni–Mn–Ga alloys under uniaxial compression. J Alloys Compd. 2017;722:721–8.

    Article  CAS  Google Scholar 

  2. Bachaga T, Daly R, Escoda L, Sunol JJ, Khitouni M. Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim. 2015;122:167–73.

    Article  CAS  Google Scholar 

  3. Bachaga T, Daly R, Khitouni M, Escoda L, Saurina J, Sunol JJ. Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy. 2015;17:646.

    Article  CAS  Google Scholar 

  4. Bachaga T, Zhang J, Ali S, Khitouni M, Sunol JJ. Impact of annealing on martensitic transformation of Mn50Ni42.5Sn7.5 shape memory alloy. Appl Phys A. 2019;125:146.

    Article  Google Scholar 

  5. Bachaga T, Zhang J, Khitouni M, Sunol JJ. NiMn-based Heusler magnetic shape memory alloys: a review. Int J Adv Manuf Technol. 2019;103:2761–72.

    Article  Google Scholar 

  6. Buchelnikov VD, Sokolovskiy VV. Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys. Phys Met Metallogr. 2012;112(7):633–65.

    Article  Google Scholar 

  7. Lyange MV, Barmina ES, Vladimir V, Khovaylo V. Structural and magnetic properties of Ni–Mn–Al Heusler alloys: a review. Mater Sci Found. 2015;81–82:232–42.

    Article  Google Scholar 

  8. Czaja P, Przewoznik J, Kowalczyk M, Wierzbicka-Miernik A, Morgiel J, Maziarz W. Microstructural origins of martensite stabilization in Ni49Co1Mn37.5Sn6.5In6 metamagnetic shape memory alloy. J Mater Sci. 2019;54:4340–53.

    Article  CAS  Google Scholar 

  9. Kokorin VV, Konoplyuk SM, Dalinger A, Maier HJ. Influence of martensitic transformation on the magnetic transition in Ni–Mn–Ga. J Magn Magn Mater. 2017;432:266–70.

    Article  CAS  Google Scholar 

  10. Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K, Ishida K. Observation of large magnetoresistance of magnetic Heusler alloy in high magnetic fields. Appl Phys Lett. 2006;89:182510.

    Article  Google Scholar 

  11. Huang L, Cong DY, Ma L, Nie ZH, Wang MG, Wang ZL, Suo HL, Ren Y, Wang YD. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J Alloys Compd. 2015;647:1081–5.

    Article  CAS  Google Scholar 

  12. Huang L, Cong DY, Suo HL, Wang YD. Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl Phys Lett. 2014;104:132407.

    Article  Google Scholar 

  13. Sanchez Llamazares JL, Sanchez T, Santos JD, Perez MJ, Sanchez ML, Hernando B, Ll E, Sunol JJ, Varga R. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92:012513.

    Article  Google Scholar 

  14. Zhang B, Zhang X, Yu S, Chen J, Cao Z, Wu G. Giant magneto thermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys. Appl Phys Lett. 2007;91:012510.

    Article  Google Scholar 

  15. Castillo-Villa PO, Manosa L, Planes A, Soto-Parra DE, Sanchez-Llamazares J, Flores-Zuniga H. Elasto-caloric and magnetocaloric effects in Ni–Mn–Sn(Cu) shape-memory alloy. J Appl Phys. 2013;113:053506.

    Article  Google Scholar 

  16. Turabi AS, Karaca HE, Tobe H, Basaran B, Aydogdu Y, Chumlyakov YI. Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field. Scr Mater. 2016;111:110–3.

    Article  CAS  Google Scholar 

  17. Hu FX, Shen BG, Sun JR. Magnetic entropy change involving martensitic transition in NiMn-based Heusler alloys. Chin Phys B. 2013;22:037505.

    Article  Google Scholar 

  18. Dubenko I, Samanta T, Kumar Pathak T, Kazakov A, Prudnikov V, Stadler V, Stadler S, Granovsky A, Zhukov A, Ali N. Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys. J Magn Magn Mater. 2012;324:3530–4.

    Article  CAS  Google Scholar 

  19. Quetz A, Koshkidko YS, Titov I, Pandey S, Aryal A, Ibarra-Gaytan PJ, Prudnikov V, Granovsky A, Dubenko A, Dubenko I, Samanta T, Cwik J, Llamazares LSJ, Stadler S, Lähderanta E, Ali N. Giant reversible inverse magnetocaloric effects in Ni50Mn35In15 Heusler alloys. J Alloy Compd. 2016;683:139–42.

    Article  CAS  Google Scholar 

  20. Şaşıoğlu E, Sandratskii LM, Bruno P. First-principles calculation of the intersub-lattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb). Phys Rev B. 2004;70:024427.

    Article  Google Scholar 

  21. Zhang Y, Zheng Q, Xia W, Zhang J, Du J, Yan A. Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method. Scr Mater. 2015;104:41–4.

    Article  CAS  Google Scholar 

  22. Das R, Sarma S, Perumal A, Srinivasan A. Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy. J Appl Phys. 2011;109:07A901.

    Article  Google Scholar 

  23. Ma L, Wang SQ, Li YZ, Zhen CM, Hou DL, Wang WH, Chen JL, Wu GH. Martensitic and magnetic transformation in Mn50Ni50-xSnx ferromagnetic shape memory alloys. J Appl Phys. 2012;112:083902.

    Article  Google Scholar 

  24. Tao Q, Han ZD, Wang JJ, Qian B, Zhang P, Jiang XF, Wang DH, Du YW. Magneto-structural transformation and magnetocaloric effect in Mn–Ni–Sn melt-spun ribbons. AIP Adv. 2012;2:042181.

    Article  CAS  Google Scholar 

  25. Bachaga T, Daly R, Sunol JJ, Saurina J, Escoda L, Legarreta LG, Hernando B, Khitouni M. Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memory alloys. J Supercond Nov Magn. 2015;28:3087–92.

    Article  CAS  Google Scholar 

  26. Rekik H, Chemingui M, Bachaga T, Cherif A, Bruna P, Sunol JJ, Khitouni M. Structure and Mössbauer analysis of melt-spun Fe-Pd ribbons containing Ni and Co. Metals. 2015;5:1020–8.

    Article  Google Scholar 

  27. Aydogdu Y, Turabi AS, Aydogdu A, Kok M, Yakinci ZD, Karaca HE. The effect of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J Therm Anal Calorim. 2016;126:399–406.

    Article  CAS  Google Scholar 

  28. Bachaga T, Rekik H, Krifa M, Sunol JJ, Khitouni M. Investigation on the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys. J Therm Anal Calorim. 2016;126:1463–8.

    Article  CAS  Google Scholar 

  29. Rekik H, Krifa M, Bachaga T, Escoda L, Sunol JJ, Khitouni M, Chemingui M. Structural and martensitic transformation of MnNiSn shape memory alloys. Int J Adv Manuf Technol. 2016;90:291–8.

    Article  Google Scholar 

  30. Petricek V, Eigner V, Dusek M, Cejchan A. Discontinuous modulation functions and their application for analysis of modulated structures with the computing system JANA2006. Z Kristallogr. 2016;231:301–12.

    Article  CAS  Google Scholar 

  31. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater. 2005;4:450–4.

    Article  CAS  Google Scholar 

  32. Ameur R, Chemingui M, Bachaga T, Optasanu V, Sunol JJ, Khitouni M. Thermal and structural analysis of Ni50Mn50−xInx shape memory alloys. J Therm Anal Calorim. 2019;126:1–8.

    Google Scholar 

  33. Krenke T, Acet M, Wassermann EF, Moya X, Ll M, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72:014412.

    Article  Google Scholar 

  34. Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. App Phys Lett. 2002;80:1746–8.

    Article  CAS  Google Scholar 

  35. Righi L, Albertini F, Fabbrici S, Paoluzi A. Crystal structures of modulated martensitic phases of FSM Heusler alloys. Mater Sci Forum. 2011;684:105–16.

    Article  CAS  Google Scholar 

  36. Dong S, Chen J, Han Z, Fang Y, Zhang L, Zhang C, Qian B, Jiang X. Intermartensitic transformation and enhanced exchange bias in Pd(Pt)-doped Ni-Mn-Sn alloys. Sci Rep. 2016;6:25911.

    Article  CAS  Google Scholar 

  37. Vishnoi R, Kaur DB. Structural and magnetic properties of magnetron sputtered Ni–Mn–Sn ferromagnetic shape memory alloy thin film. J Appl Phys. 2010;107:193907.

    Article  Google Scholar 

  38. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91:102507.

    Article  Google Scholar 

  39. Wang J, Jiang C, Techapiesancharoenke R, Bono D, Allen SM, O’Handley RC. Anomalous magnetizations in melt-spinning Ni–Mn–Ga. J Appl Phys. 2009;106:023923.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51861145315, 11929401, 12074241), the Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (SKLASS 2020-Z07), and the Science and Technology Commission of Shanghai Municipality (19DZ2270200, 19010500500, 20501130600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bachagha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachagha, T., Ren, W., Sunol, J.J. et al. Microstructure characterization, structure and magnetic properties of Ni–Mn–Sn shape memory alloys. J Therm Anal Calorim 147, 2147–2154 (2022). https://doi.org/10.1007/s10973-021-10625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10625-5

Keywords

Navigation